

TEK Mandinapise

The Tektronix 2200 Series. Simply great.

ektronix traditions of excellence in designing and manufacturing oscilloscopes are recognised all over the world. But rather than rest on past
laurels we have veered dramatically laurels, we have veered dramatically
from the well established design paths rom the well established desig
we ourselves have laid down. With the 2213 priced at $£ 670^{*}$ and the With the 2213 priced at $£ 670^{*}$ and
2215 at $£ 850^{*}$, these 60 MHz dual trace oscilloscopes are an entirely new form of instrument.
Their most remarkable characteristic is the way in which major design
advances have provided full-range capabilities at prices significantly
below what you would expect to pay. below what you would expect to pay.
How has this been accomplished? To begin with, we have reduced the number of mechanical parts by more
than half This not oly saves manuthan half. This not only saves manu-
facturing time, it lowers costs and improves reliability.

Board construction has been greatly
simplified and the number of boards seduced. Board connectors have also been reduced substantially and
cabling cut by an amazing 90%.

The 2213 and 2215 have a high efficiency regulated power supply which does away with the need for a heavy
power transformer. There are no linevoltage adjustments. Just plug the instrument into a power socket supply-
ing anything from 90 to 250 volts. ing anything from 90 to 250 volts,
$48-62 \mathrm{HZ}$ switch on and you are $48-62 \mathrm{HZ}$, switch on and you are
ready to measure. Power saving circuitry has eliminated the cooling
fan resulting in further economies in fan, resulting in further economies in
size and weight.

These scopes have it all. Dual trace. Delayed sweep for fast, accurate timing measurements. Single time
base in the 2213 , dual time bases in the 2215. An advanced triggering
system, automatic focus and intensity Beam finder - and much more. Interested? Then why not telephone
your nearest Tektronix office or circle the enquiry number for further information.

erformance Specifications

 BandwidthTwo channels, DC-60 MHz to 20 Two channels, $\mathrm{DC}-60 \mathrm{MHz}$ to 20
$\mathrm{mV} /$ div, 50 MHz to $2 \mathrm{mV} / \mathrm{div}$.
 Light Weight
$6: 1 \mathrm{~kg}(131 / 2 \mathrm{lbs})$ cover and pouc
Sweep Speeds
Sweeps from $0,5 \mathrm{~s}$ to $0.05 \mu \mathrm{~s}$ (to 5 ns/div with $\times 10$ magnification). Sensitivity Scale factors from $100 \mathrm{~V} /$ div ($10 \times$
probe) to 2 mV /div ($1 \times$ prob) probe) to $2 \mathrm{mV} /$ div ($1 \times$ probe).
Accurate to $\pm 3 \%$. AC or DC coupling. Also available from Electroplan. - Prices subject to change without notice.

Tektronix UK Limited
 Regional Telephone Numbers: Maidennead
0628732111 Manchester 061.4280799 Regional Telephone Numbers: Maidenhead
O668 73211., Manchester O61.420799,
Livingston 32766 , Dublin $850685 / 850796$ PT206

Tektronix.

TEST COMPONENTS on this new oscilloscope!

- Test solid state devices in, or out of, circuit

- Fast location of shorted, open and leaky components
- Test diodes, transistors, LEDs, electrolytics, FETS, MOS and CMOS etc. PLUS.

- Full function, dual trace, 12MHz oscilloscope
- Fine sweep and gain controls
- Differential measurement mode-essential fo effective servicing of disc drives and tape recorders

Fundell

A really versatile 'scope for the test, service or development engineer

wireless world

MAY 1982 Vol 88 No 1556

29 ARMS AND THE MAN

30 ORCHESTRAL SOUND, HALLS AND TIWBRE by Denis Vaughan
34 LINGMUIR THIN-FILM THROUGH FOR MOLECULAR ELECTRONICS
35 NETWORKING SMALL COMPUTERS by Philip G. Barker
40 TELEDON VIDEOTEX IN UK
41 DIGITAL TELEVISION STAMDARDS by A. Howard Jones
42 COMMUNICATION COMMENTARY
44 MICRO-CONTROLLED LIGHTING SYSTEM by John D. H. White and Nigel M. Allinson
47 16-CHANNEL DATA ACQUISITION by Pat Hickey
50 CIRCUIT IDEAS
52 DIIITAL FILTER DESIGiN
by B. M. G. Cheetham and P. Hughes
57 LETEERS TO THE EDITOR
61 DIEITAL OPTICAL RECEIVERS by lan Garrett
64 NEWS OF THE MONTH
67 EPROM PROGRAMMER by H. S. Lynes
70 DISC DRIVE POSITIONERS by J. R. Watkinson
76 DESIGNING WITH MICROPROCESSORS by D. Zissos and Jane Pleus
78 GEPSTRUM ANALYSIS
CEPSTRUM ANALYSIS
by R. B. fandall and Jens Hee
NEW PRODUCTS

$120^{\text {Index to adverisers }}$

THE HEADSET THAT'S WAYAHEAD OF ITS TIME.

THE DANAVOX HMT 808.

The Danavox HMT 808 is the most advanced headset of its kind that you can buy today Employing Danavox expertise and quality throughout, it offers many unique features at a remarkably low price.

Lightweight. Weighs only 35 grams - Comfortable and hygienic. Does not go in the ear so it can be comfortably positioned the ear so it can be comfortably positioned in seconds Versatile. Can be worn under binaurally Multiple version microphone. Available with either magnetic
microphone or electret with noise
cancelling feature and pre-amplifier for matching into telephone systems

Technically advanced. Pre-amp employs latest thick film technology-Easy servicing and repairs. Quick changing of earphones, cords, earpieces and switches engineering and guarantee

For full details contact John Carter at Danavox

Danavox

DANAVOX (Gt. Britain) Ltd.
1 Cheyne Walk, Northampton NN1 5PT
Tel: (0604) 36351 Telex 312395

Hectronic brozers

 Scoond User Text Equipment. Makes engineers smile without making accountants ciy.Electronic Brokers are Europe's leading
Second User Equipment Company. We carry large stocks of the very latest test equipment large stocks of the very latest is refurbished in our own service laboratories and calibrated to meet the

ANALOGUE VOLTMETERS

 ANALYSERS

BRIDGES

 yne Kert

FREQUENCY Fluke

DVM's AND DMM's	
${ }_{8022 A}{ }^{\text {Fluke }} 31 / 2$ digit hand neld.	¢65.

manufacturer's sales specifications. When you buy used equipment from Electronic
Brokers, it can be yours in just days. No waiting for manufacturers lengthy production schedules. All equipment is fully guaranteed.

OSCILLOSCOPES

 RECORDERS
Watenabe.
CC 6416 Chan
 SIGNAL SOURCES

MISCELLANEOUS

 Please note Prices shown do not include VAT or carriage.
 Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN Telephone: 01-278 3461 Telex: 298694 Elebro G

NEW LOW COST
 12 BIT ANALOGUE I/O \& DIGITAL I/O FOR "PET" USER PORT

AT LAST
The "PET" user interface that everyone can afford that provides:-
4×12 BIT ANALOGUE I/P: $4 \times$ TTL I/P 2×12 BIT ANALOGUE O/P: $4 \times$ RELAYS
By using the "PET"s own 6502 Microprocessor, we are able to offer an unheard of ratio of performance vs value for money. Price includes operating program in EPROM which greatly simplifies its use. f195
CALL CIL FOR DETAILS
Coming soon, a suite of applications programs in EPROM to include waveform generation, data acquisition etc.

CIL MICROSyStems Ltd DECOY ROAD WORTHING w. Sussex (0903) 210474 Telex 87515
wh mor further detais

Sowter Transformers

With 40 years' experience in the design and manuracture of se
AUDIO FREQUENCY
TRANSFORMERS OF EVERY TYPE
YOU NAME IT! WE MAKE IT
OUR RANGE INCLUDES

E. A. Sowter Ltd.

 Tolox 9877036 Sowter

METER PROBLEMS?

137 Standard Ranges in a variety of
sizes and stylings available for $10-14$ sizes and stylings available for 10-14
days delivery. Other Ranges and days delivery. Other Ranges a
special scales can be made to order.

Full Information from:

HARRIS ELECTRONICS (London) 138 GRAY'S INN ROAD, w.c. $\quad \begin{gathered}\text { Phone: } 01-837 / 7937 \text { Telex: } 892301\end{gathered}$
 WIRELESS WORLD MAY 1982

Burdett Road, Wisbech
Telephone 094563281 Telex 32630 ANGLIA G

We supply PMMIS for Industry

HM 307
OSCILLOSCOPE

 LPestechnique provides stable and
reliable triggering up to $30 M H Z=138.00$

HM412-5
Dual Trace. DC to $20 \mathrm{MHZ} 8 \times 1 \mathrm{~cm}$
display with internal graticule. Rise time
 Add and invert modes. Timebase
$0.5 \mu-0.25$ vith sweep delay $100 \mathrm{~ns}-15$
$\times 5$ exomansion $x-y$.

HM705

Dual Trace DC-70MHz $8 \times 10 \mathrm{~cm}$ display
With internal Variable input iraticule Rivisetime 5 SN
 10025 . 15×10 expansion. XY
operation Z mod

The above prices do not Include carrlage
or VAT (15\%).

Simple Phone or Telex your order for immediate dispatch.

Electronic Brokers Ltd 61/65 Kings Cross Road London WClX 9LN Telephone: 01-278 3461 Telex: 298694 Elebro G ww - 202 FOR FURTHER DETALLS

Sinclair ZX81 Personal Computerthe heart of a system

 that grows with you.980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under 100. Not surprisingl ere sold.
In March 1981, the Sinclair lead 69.95 the dramatically. For just more advanced facilities at an even ower price. Initially, even we were 50,000 in the first 3 months!

Today, the Sinclair ZX81 is
Today, the Sinclair ZX81 is the add 16 -times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX orer pie gro Lower price: higher capability teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.
It uses the same micro-processor, but incorporates a new, more pow intelligence' of the computer This chip works in decimals, handles log and trig, allows you to plot graphs, and builds up animated displays. And the ZX81 incorporates oth to load and savenamed progrims on cassette, for example, and to drive the new ZX Printer.

Kit: \&49. ${ }^{95}$

Higher specification, lower price

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from

New, improved specification - Z80A micro-processor - new chip, widely recognised as the bes ever made.

- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words
(RUN, LIST, PRINT etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight - Graph-drawi display facilities. numerical arrays
Up to 26 FOys.
- Up to 26 FOR/NEXT loops. games as well as serion - useful for - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack. - Able to drive the new Sinclar Adva Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-bu
replacing 18 ZX80 chips.

£69.95

Kit or built - it's up to you You'll be surprised how easy the ZX81 kit is to build: just four chips to discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated (supplied with Kil version).
Kit and built versions come comyour TV (colour or black and white) and cassette recorder.

16K-byte RAM pack for massive add-on memory.

Designed as a complete module to

 fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply you data/program storage by $16!$ Use it for long and complex programs or as a personal databaseYet it costs as little as half the price of competitive additional memory

With the RAM pack, you can
also run some of the more sophisticated $Z \times$ Software - the Business for example.

Firn디air ZX81

6 Kings Parade, Cambridge, Cambs., CB2 1SN.

Available now-

 the ZX Printer for only £49.95Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC numerics and highly sophisticated graphics.
A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions

At last you can have a hard copy of your program listings - particularly

How to order your ZX81

BY PHONE - Access, Barclaycard o Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST- use the no-stamp needed coupon below. You can pa and we have no doubt that you will be. To: Sinclair Research Ltd, FREEPOST, Camberley, Surrey, GU15 3BR, \begin{tabular}{|l|l|l|l|l|l|}
\hline aty \& Item \& Order

\hline

\hline \& Sinclair XX8 Personal Computer kitts). Price

ZX81 BASIC manual, excludues mains adaptor

\hline
\end{tabular}

 Price includes 2×8 BASIIC manual and mains adaptortor.

> Post and Packing.

useful when writing or editing programs. your results forse you can print out or sending to a friend or sending to a friend
Printing speed is 50 characters per second, with 32 characters
line and 9 lines per vertical inch. The ZXPrinter connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft ong wid wide) is supplied, along
by cheque, postal order, Access arclaycard or Trustcard. EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option. We want you to be satisfied beyond doubt * Pease tick if you require a VAT receipt *Please charge to my Acce order payable to Sinclair Research Ltd, for $£$ *please delenge to my Access/Barclaycard/Trustcard account no.

Name: Mr/Mrs/Miss
FREEPOST -
LREEPOST
ww - 051 FOR FURTHER DETAILS
IEEE PROGRAMMABLES from TIME
9814 IEEE Phogrammable voltage standard

9816 IEEE Programmable voice

9815 IEeE Programmable screwdriver

9810 IEEEPROGRAMMABLE POWER SUPPLY

9812 IEEE PROGRAMMABLE SWITCH

9811 IEEE PROGRAMMABLE RESISTANCE

W - 070 FOR FURTHER DETAILS

	ELECTRON GUNS TV TUBE COMPONENTS If you are Rebuilding or Manufacturing TV Tubes - We are the TV Tube Industry. We specialise in all aspects of Electron Mount Technology. Our product range includes more than 250 gun types for Colour, In Line, Mono and Display Tubes along with Mount Parts, Bases, GetA Full Technical Back-up and Advisory Service is available to all customers Worldwide. Please request our current catalogues and Data Information. Telephone: (0789) 76452/764100. Telex: 312354 Grifem G
WW - 039 FOR	With 1,100 instrument cases in over 750 sizes, and some 250,000 case parts currently in stock, we certainly enable you to box clever A practical solution to every electronic packaging requirement, without the problem of high tooling hat's our aim at West Hyde. By being able to supply an off the shelf' enclosure for just about any electronic or ectrical instrument, we can certainly make sure when it comes to enclosing your particular product, we can help you to box clever! For more information send for our catalogue, price $£ 1.00$ inc. $P \& P$. \square s West Hyde Developments Ltd. Unit 9 , Park Street Industrial Estate, Aylesbury, Bucks. HP20 1ET. Telephone: Aylesbury (0296) 20441. Telex: 83570 W HYDE G. DETAILS

Memotech's New Memory System for the $\mathbf{Z X 8 1}$ Itgrowsas youprogress

memopah 16

Memopak 16K Memory Extension - $£ 59.95$ incl.VAT
tis a fact that the ZX81 has revolutionised home computing and coupled with the new Memopak 1 KK it gives ou a a
massive 16 K of Directly Addressable RAM. which is neith witched nor paged. With the addition of the Memopak 16 K your $\mathrm{ZX8} 1$'s enlarged memory capacity will enable it to execute longer and more sophisticated programs. and to
The 16 K and 64 K Memopaks come in attractive. customdesigned and engineered cases which fit snugly on to the back of the ZX81. giving tirm, wobble-ree connections
Coming Soon...

All these products are designed to fit piggy-back fashion
on to each other and use the Sinclair power supply. on te each other. and use the Sinclair power Supply.
WATCH THIS SPACE for further details. We regret we are as yet unable to accept orders or enquires concerning these product

- but well let you know as soon as they become available.

$$
\begin{aligned}
& \text { How to order your Memopak. } \\
& \text { By Post: Fill in the coupon below and enclose your } \\
& \text { chequef.P. Access or Barclaycard number } \\
& \text { By Phone: Access/Barclaycard holders please ring }
\end{aligned}
$$

Please make cheques payable to Memotech Limited Please debit my Access Barclaycard* account number

SIGNATURE \qquad
AME \qquad
\qquad

\qquad

МЕМОРАЕ 64 K

Memopak 64 K Memory Extension - $£ 99.00$ ind.VAT

The 64 K Memopak is a pack which extends the memory of The ZX81. by a further 56 K . and together with the ZX81 gives a addressable. The unit is user transparent and accepts basic commands such as 10 DIM A(9000).
BREAKDOWN OF MEMORY AREAS
0-8K
$8-16 \mathrm{~K}$. Sinclair ROM
8-16K .. This section of memory switches in or out in $4 K$ blocks to leave space for memory mapping. holds its
contents during cassette loads. allows communication between programmes, and can be used to run assembly language routines.
$16-32 \mathrm{~K}$. . This area can be used for basic programmes and assembly language routines.
$32-64 \mathrm{~K}$. . 32 K of RAM memory for basic variables and large arrays.
With the Memopak 64K extension the ZX 81 is transtormed into powerful computer. suitable for business. leisure and

Unique 3 monthtrade-in offer!

When your programming needs have outgrown the capacity
provided by 16 K RAM. and you find it necessary to further provided by 16 K RAM. and you find it necessary to further
extend your ZX81's capacity. we will take back your 16 K extend youk and allow a discount of $£ 15.00$ against your
Memopak purchase of our 64 K model.*

with your Memopak - so we offer a 14-day money back Guarantee on all our products.

$$
\begin{aligned}
& \text { We want to be sure you are satisfied with your Memopak -so we offer a } 14 \text { day money back Guarantee on all our products. } \\
& \text { Memotech Limited, } 3 \text { Collins Street, Oxford OX4 } 1 \text { XL, England Telephone: Oxford (} 0865 \text {) } 722102 / 1 / 5
\end{aligned}
$$

$$
\begin{aligned}
& \text { Memotech Limited, } 3 \text { Collins Street, Oxford OX4 1XL, England Telephone: Oxford (0865) } 722102 / 3 / 4 / 5 \\
& \text { MIRELESS WORLD MAY } 1982
\end{aligned}
$$

$$
\text { WIRELESS WORLD MAY } 1982 \text { - }
$$

RADIOCODE CLDCKS

are powerful and comprehensive instruments which receive, decode
and analyse time-coded stand

Applications
Automatic master clock and slave controller Synchronisation of separate equipment and devents.
Programmable energy management system. Computer clock/calendar with battery backup.
Data loget Data logging and time recording.
Process and equipment control Process and equipment control.
Braadcasting, Astronomy, Navigation

- Satellite tracking.

If you have a time or synchronisation problem, write or phone for further details of our portable and new microcomputer-controlled Radiocode

Circuit Services, 6 Elmbridge Drive
Ruislip, Middlesex. Ruislip 76962
WW - 028 FOR FURTHER DETAILS
OLYMPIC TRANSFORMERS LTTD L.T. TRANSFORMERS PRIMARIES 220-240V FULLY SHROUDED TERMINAL BLOCK CONNECTIONS

STEP DOWN TRANSFORMERS FOR

AMERICAN EQUIPMENT
$0-240-110 \mathrm{~V}$ For use with 50 cycles Non-Motorised Appli-0-240-100V For use with 60 cycles Motorised Anpliance RANGE 1 Fully Shrouded. Complete with 3-Pin American RANGE 2 Complete with Carrying Case. 240 V Mains Lead First 3 items. (*) fitted with one 3-Pin American Socket. All other
items fitted with two 3 -Pin American Sockets. RANGE 1

15\%V.A.T. TO BE ADDED TO COST OF ALL ITEMS INC. POSTAGE WEEKDAYS, 9 a.m. to 5 p.m.; SATURDAYS, 11 a.m. to 2 p.m

Ideal for design, prototype and hobby

G.S.C. (UK) Limited, Dept. 7u Unit 1, Shire Hill Industrial Estate, Telephone: Saffron Walden (0799) 21682 Telex: 817477

Tomorrow's tools for today's problems
GLOBAL SPECIALTIES CORPORATION ГG.S.E. (UKKLLimited Dept. Tu, Unit 1 ,Shire

No.	моое		coicle	Nict	\mid	
	P86	${ }_{760}^{630}$	${ }_{6}^{6}$	${ }_{1250}^{9.75}$	${ }_{\substack{12,36 \\ 15.52}}$	${ }_{\text {kit }}^{\text {kit }}$
	${ }_{\text {P8B100 }}^{\text {PB101 }}$	760 940 120	10	${ }^{12} 17.50$	15.52	
4	${ }^{\text {P8B102 }}$	1240 2250	12 24	${ }^{24.95}$	30.41 46.57	
5	${ }^{\text {PB8103 }}$	${ }_{3060}$	${ }_{32}^{24}$	49,00	5807 8395	
8	${ }_{\text {P8105 }}^{\text {Pr203 }}$	${ }^{4560}$	48 24 24	71.00	72.95	
9	${ }_{\text {PBP2303A }}$	${ }_{2250}^{2250}$	${ }_{24}^{24}$	${ }^{89.00}$	${ }_{83.95}^{104.65}$	

1 Ienclose ChequelP.O. for $£$ or debit my Barclaycard, Access, American Express card no. | FOR IMMEDIATE ACTION - The G.S.C. 24 hour 5 day a week service $\left\lvert\, \begin{aligned} & \text { For FREE } \\ & \text { catalogue }\end{aligned}\right.$ Telephone (0799) 21682 and give us your Barclaycard, Access,
American Express number and your order will be in the post immediately

LINSLEY-HOOD CASSETTE RECORDER 1

PRACTICAL WIRELESS 'WINTON' TUNER

Please send 9×4 S.A.E. or telephone for lists giving fuller details and
price breakdowns.
Instant easy ordering, telephone your
requirements and credit card number to us on Oswestry (0691) 2894

AMATEUR RADIO HANDBOOK 1982 by A.R.R.L.

 30-hour Basic by PrigmoreUCSD Pascal Handbook by Electronic Equipment Reliability by Cluley
Micros in Amateur Radio by Kasser Micros in Amateur Radio by Kasser
How to Design Build Rem $\begin{array}{r}\mathbf{£ 6} 6.50 \\ \text { £ } \\ \text { f7. } 7.50 \\ \hline\end{array}$
 t of Electroni
\star PRIC THE MODERN BOOK CO
 : Closed SATURDAY 1 p.m.

WW - 058 FOR FURTHER DETAILS

INSLEY-HOOD 300 SERIES AMPLIFIERS

FEED YOUR MICRO BYTES WITH OUR SOLENOID CONTROLLED CASSETTE DECK

Anentire range of low-cost highperformance instruments	
EEbtronios Making Performance Affordable	
Test our low priced measures up to the specs and our price price/performance	test equipment. It best. Compare our s-no-one can beat our ratio.
Full colour illustrated brochure and price list BLACK STAR LTD., 9a Crown Street,St. Cambs. PE17 4EB Tel: (0480) 62440.	
WW - 024 FOR FURTHER DETALL	

WIRELESS WORLD MAY 1982

WW - 053 FOR FURTHER DETALLS

Kontakt
Dissolves
00

Spray Wash WL

ALSO AVAILABLE:
A Complete range of industrial aerosol sprays

Special Products Distributors Ltd.

WW - 046 FOR FURTHER DETAILS

WW - 025 FOR FURTHER DETALLS
WIRELESS WORLD MAY 1982

ELEGTROVALUE

lind

The Speaker Engineers KEF Electronics Ltd., Tovil, Maldstone, Kent ME15 $6 Q$ P.
 KEF Drive Units
Name:

Address:
 Address:

The NEW
KEF Constructor Series

A new generation of drive units from KEF is KEF's avive units have the heme constructor improved in terms of Keducing audible colouration as a result of the detailed analysis of speaker vibrational characteristics, using Now the improved units and complete technical data on Now the improved units and complete technical data on
them are available to you to build a system to your own design or to use in any prescribed combinations to

DRIVE UNITS

The Professionals

TEST COMPONENTS ON THIS NEW OSCILLOSCOPE

USE READER CARD FOR DETAILS

WIRELESS WORLD MAY 1982

new
SNM 85
PROUNECHI
SONN/D
brings a new dimension to a hand-held condenser microphone

This new high technology Shure microphone will change the way people think of condenser microphones. The
SM85 is designed especially for on-stage, hand-held use Its sound is unique-far more tailored to the special needs of the vocant vocal reproduction. and a gentle bass rolloft that minimizes handling noise and "boominess" associated with close-up use. Ultra-low distortion electronics make the SM85 highly immune to stray hum fields. An integral, dual-
density foam windscreen provides built-in pop protection. What's more, the SM85 Condenser Microphone must pass the same ruggedness and dependabinjy tests required of Shure dynamic microphones. As a result. the
SM85 sets a new standard of reliability for hand-held
condenser microphones.
The SM85 is extremely lightweight, beautifully balanced
-it feels good. looks olo -it eels good. ooks good on-stage, on-camera, on-tour. TECH Sound, or write to us (ask for AL664) for full details.

SM85

Cardioid Condenser
Hand-Held
Professional Microphone

wireless world

Editor: PHILIP DARRINGTON
Technical Editor: GEOFF SHORTER, B.Sc. 01-661 8639
Communications Editor: MARTIN ECCLES 01-661 8638
News Editor: DAVID SCOBIE 01-661 8632
Design Editor ALAN KERR
Drawing Office Manager: ROGER GOODMAN
Technical Illustrator: BETTY PALMER
Advertisement Manager: BOB NIBBS, A.C.I.I. 01-661 3130
$\begin{aligned} & \text { DAVID DISLEY } \\ & 01-6618641 \end{aligned}$
BARBARA MILLER 01-661 8640
Northern Sales: HARRY AIKEN 061-872 8861
Midland Sales: BASIL McGOWAN 021-356 4838
Classified Manager: BRIAN DURRANT 01-661 3106
$\begin{aligned} & \text { OPHELIA SMITH } \\ & 01-6613033 \end{aligned}$
Production: BRIAN BANNISTER (Make-up and copy) 01-661 8648

Arms and the man

A great many words have been written in expediency of engineering. On the one expediency of engineering. On the one that the responsibility for rendering the apable of realisation lies squal le designers and makers of lethal hardware engineers themselves. If it were not for the complaisance of eng. would not exist. Those who do not embrace this belief or who choose to disregard its implications) point out that if "defence systems" - a weasel expression, referrin which by no stretch of the imagination can be seen in a posture of defence - were not available, then one "side" would subdue the other and impose its own ideology on the defeated. The solution to this problem camp to arm itself to the teeth at an everincreasing rate, threaten to irradiate the planet if provoked, but only to do so if the other side does it first. The unspeakable, impenetrable folly of such an attitude is amost too obvious to warrant argument:
its holders would scarcely deny that that this method of preserving life and liberty is hardly compatible with the pursuit of It is perfec
It is perfectly true, as apologists for the effects of the insane compulsion to ccumulate weapons are not at all a
unsavoury as their raison d'être. "Spinoff' has provided most of the advances in for example, electronics in the last few accelerating at such a rate that it is barely possible to see five years into the future, assuming there is one. But to what effect? After the expenditiure of so much effort over so many years, with neither East or
West yet persuaded that that an unstable equilibrium is a poor way to avoid catastrophic failure, are we being asked to believe that the possession of home computers, video games and digital
wristwatches makes the whole thing worth
while?
Some of the greatest scientists and
engineers in the world, in both East and
West, have laboured their entire working
lives to produce hellish machinery, the whole point of which is that it shall neve be used. Hospitals, schools, universities are closed or run down so that more weapons can be bought or made and we
only benefits in our own field that we have to show for all this misdirection of effort and resources are a few gadgets. Admittedly, communications have improved immeasurably in response to the good deal of the improvement is taken up by the provision of entertainment. It is a specious argument, which take no account of the time scale involved: eve in the absence of military urgency, th advances would most probably occu their own good time, and who is to say tha that sooner is better than later when the pace of progress outstrips our
understanding of it?
written on this heme has not dwelt on the inconveniently large question of waste. Materials, the efforts of gifted men and women, irreplaceable earth resources, time and the wealth of nations are all squandered to produce equipment which, if employ would have failed in its purpose. And this while millions of people in all continents are deprived of the simplest staples of life The contrast between profligacy in the primitive is too stark for us to contemplate the continuation of useless armed posturing into the indefinite future: for that is the outlook - either a sudden and complete end to humanity or an East and West. Scientific American has pointed out that there are now more than three TNT - equivalent tons of nuclear explosive for every single person on earth. it will bear repeating, that engineers in all the developed countries have made the confrontation possible. It is therefore engineers who are in the best position to bring it to an end, by simply refusing to.
work on armaments. Call it rebellion or simply common sense, but since politicians the world over seem bent on killing us all, it is the only way to avoid collective suicide.

ORCHESTRAL SOUND, HALLS AND TIMBRE

 or-'why does it sound so beautiful?'

 or-'why does it sound so beautiful?'}

This article examines aspects of the appreciation of orchestral sound, with particular reference to the transfer characteristics of the our New subjective criteria are proposed various directions and on our sense of orientation. New subjective criten
The Kingsway Hall is used as a model in the discussion
by Denis Vaughan*

For several decades the most sought-after For several decades the most sought-after
venue for recording orchestral music in England has been the Kingsway Hall in London: legend has it that Sir Thomas Beecham was the first to identify this hall
as particularly suited for the purpose. Are as particularly suited for the purpose. Are
there some idenifiable reasons for its superior warmth and clarity? Could they be applied elsewhere.
My interest in acoustics was stimulated by a request from the Australian Broadcasting Commission. The quest to
find a common denominator for warm, rich string tone in a hall and in a recording has led me to study many halls, and to analyse musical qualities and our hearing capacities. These analyses have brought
several surprises. First of all come our hearing capacities.

imbre

Our localization of sound is based on three main complementary systems: only two of ${ }^{*}$ Musical Director, State Opera of South Australia
30

Horseshoe balcony in the Kingsway Hall
only $17 m$ wide, giving early reflections back at the orchestra.
these have been used so far in stereo recording techniques. The first is based on recording techiniques. Timing of impulses to each ear. A difference of 0.63 milliseconds we interpret as a change of angle of 90° in the direction of the earlier impulse. So we can, miraculously, recognise a timing
difference is small as 0.007 ms , the time necessary to move the sound source one degree to the side. The second is based on loudness and intensity: a softer sound will seem farther away. We apply this in localization: just a small change in volume
on one channel will shift a stereo picture to on one channel will shift a stereo picture to
the left or right and a general rise in level brings an instrument nearer to us. But the third system, timbre, has yet to be explored.
We hear a different timbre from every angle. Move a small clock around close to always tell where it is, and that the sound
is never identical. If the clock is near your ear but always equidistant from it, this test excludes the possibility of the impulse or intensity methods contributing to the effect: we recognize each and every
direction partly by its own particular direction partly by its own particular
timbre. If you change the timbre, the apparent direction changes. The filtering effect of our external ear, illustrated by Fig. 1 and Fig. 2, causes us to hear a very odd balance in sound reaching us face-on. The left-hand column of Fig. 3 shows that, at 3 kHz of 12 dB and a deep trough at 10 kHz of -10.5 dB . So we hear certain 15 kper -high frequencies (except 14 and 5 kHz) frontally very much weaker than hose at 3 kHz .

nimbre x. Characteristic quality of sounds ment, dependiag on the wimber and char memter of the overtones. acter

Fig. 1. Filtering effect of the ear canal, showing peaks near 5 and 10 kHz , common to all that we hear. Al he

${ }_{\text {FREQUENCY (KHz) }}{ }^{2}$
Fig. 2. Filtering effect of the outer ear on
sound arriving in sounds arriving in the horizontal plane. 0°
corresponds to a point straight in front.

Horizontally to the side at 90° the balance is more even. The upper frequencies become as much as 15 dB stronger than the frontal spectrum and the smoother; thus reducing the range between the extremes to only 15 dB as opposed to the 22.5 dB range of the frontal spectrum. But the sensitivity which we have at 90° for 12 and 13 kHz starts' to 4 and 5 summarize the table of Fig. 1 graphically. graphiculy. mave noticed another aural
characteristic. We tend to identify bass notes as coming from below our ears; also sounds. I believe that we react similarly to loudspeaker placing. Surprisingly, above our heads we can hear a strong peak at 8 and 9 kHz , as shown by Fig. 6. In fact we can only hear 8 kHz as coming from that direction, no matter where the sound above 10.5 kHz , we hear very little from over our heads. Therefore in a low room or a hall, where the predominant early reflections come from the ceiling, we can texture in the sound. Figure 7 is the graphical representation of Fig. 6. WIRELESS WORLD MAY 1982

Musical qualitie

It is no easy task to prepare a preferentia Celibidache and qualies in sound Celibidache and other conductors, and have approved the following list, which should only be regarded as tentative, and wide open to improvements
richness - powerful multiple reflections; density - many reflections across the hal warm warmth - a strong bass-heavy frequency
response curve, with a plateau in the tenor octave ($125-250 \mathrm{~Hz}$) tapering off smoothly towards the top;
clarity - medium high frequencies arriving from all directions shortly after
the original sound;
intimacy - an adequate supply of frequencies between 11 and 15 kHz arriving early at the ear between 54° and
144° horizontally, and below 60° vertically; weight - low frequencies arriving shortly after the original sound;
singing tone - a growth in the reverberation reaching a peak about 100 milliseconds after the original sound,
dying away smoothly over about 1.8 secs. One reason why richness - and not long reverberation - tops the list is because a variety of reflections coming
from many angles close upon each other from many angles close upon each other
gives our ears a full frequency coverage. gives our ears a full frequency coverage. one direction, the deficiencies can be made good only by receiving sound from all sides. In Avery Fisher Hall in New York, you can hear that in some upper/front balcony seats, where richness is present,
any lack of the other qualities is much less any lack of the other qualities is much less noticeable

Impulses

Another reason for our appreciation of richness is our astonishing capacity for
quickly perceiving separate impulses in

perceiving separate impulses in

sound. Tests have shown that all listener refer to hear orchestral sound impulse ars ears - hence the preference for stereo ove
mono. This scattering of the impulses is called 'binaural dissimilarity'. In a concer hall, it is the extent of the initial time-delay gap between the original sound and the
first reflection - often about 40 ms in first reflection - often about 40 ms in a medium-sized hall - which gives much of been associated with this gap, but my list suggests other requisites,) Our ear appreciate these reflections most when they arrive close to horizontally from the
side. My timbre lists show that the timbre of a hall is influenced for us first by the angle at which we hear the strongest first reflection, and then by the shape and materials of the hall, or room, and the
reverberant spaces beneath it When we receive a lot of early When we receive a lot of early
reflections, one shortly after another, these impulses come in an arpeggiated form in slow motion rather like the thrumming of a chord on a harp. This sequence of impulses we perceived as being much
richer than an instantaneous reflection. A digital delay unit demonstrates this quickly, by making two or three string instruments sound like a rich chorus. Halls are preferred where the sequence of
impulses, whether first or later reflections, dies away evenly. It is called a 'smooth decay curve'.

Home simulation

These two keys to richness, namely timbr and impulses, are demonstrable in the developed in the phonographic industry, as soon as the field of the external ear is completely measured. The system would need at least ten loudspeakers: one large one on the floor to represent the orchestra,
and the smaller ones set around the room above and below the ear level, with the apposite timbre applied to each speaker

Fig. 3. Lateral differences in timbre for one ear, compared to sound reaching us from
straight ahead at eye level (from Mehrgardt and Mellert) we hear in a fine hall like Kingsway. A six rack tape or cassette could probably upply sufficient source material. Al nitial tests I have made in this direction
mprove the timbre and richness far mprove the timbre and identical-timing and timbre of the quadrophonic system. Vithout dropping hints, we might call th ew system 'decaphonic'. It develops the
ose system of reflections from all sides, which works best for me in rooms with ttle or no damping. Both point to the creased physical satisfaction when ou rientation filtering system is being fully
tilized in the appreciation of musica atilized in the appreciation of musical
sound. The main problem lies in fixing the delicate balance between focused image nd general immersion in the sound. I have always found a stereo image to mprove greatly when the frontal speaker he timing of the frontal wall reflection eems to give full depth to the image. Thus, under ideal circumstances, an rchestra seems to be the same distance behind the speakers as the orchestra wa hence the need for simple microphon techniques. To obtain this effect in a oom, I have often needed to set the peakers parallel and not angled towards e. In genera, advice, the adage of the RCA engineer Albert Pulley seems to work vell in practice - that is, to set the speakers at a quarter of the width in from he sides and a quarter of the length of the reserved with this obstructive placing if

Fig. 4. Graphical summary of lateral Fig. 4. Graphical summary of lateral
differences in sound pressure for the right ear. Negative angles refers to sound coming from the left side of the head. Range is ${ }_{32}$
he speaz

ong reverberatio

Until such a time as a 'decaphonic' system why very reverberant halls will b favoured for recording. Present systems se mainly microphones which pick up ontally frequencies that we can neve ear there (winar 3 -off in pak, 10 kH above 11 kHz). Also the loudspeakers are sually placed at angles where we canno perceive several other frequencies very ell, showing a 20 dB range between th 3 kHz and 11 kHz readings. The simples mismatches is to add reverberation to difuse and thus beautify the sound.
This has the unfortunate effect of obbing the interpreter of a number of can never achieve a quick silence, until the ommon 2.5s of reverberation has died way. That would never have done for erdi, Toscanini or Callas
Instead we should seek out a true and
atisfying way to give us global $\left(360^{\circ}\right)$ reflections in the reproduction, and thus a atural, full-frequency spectrum, oncentrating on our most sensitive area, between 40° and 140° laterally. Even most mudti-speakers) in that they eliminate the whole of our own aural frequency filter ystem. The great advances in Kopfbezogene stereophonie' (binaural
recording) fall back at this point.

Architectural prerequisites

The quest for the physical conditions necessary to produce warm, rich string tone in a concert hall was sparked off by the decision of my home town, Melbourne, Australia, to spend 33.5 square, virtually all-concrete hall for that purpose. Of the many indications giver to me, two of the most revealing were from Villem Jordan and Derek Sugden. Jordan
could not obtain 'lateral efficiency' in a hall wider than 27 metres, and observed that all the famous halls had smaller widths. Sugden stated:
"A hall must have 'presence' so that you not only preserve clarity in a reverberant powerful sound in the first 100 milliseconds in necessary. This can be achieved preferably with a width of about 18 metres, and if this is not possible then deep balconies must be used, or the terraces and providing large surfaces for lateral reflections. There must be rapidly following early reflections to really achieve timacy or presence.
A third useful piece of wisdom came Krom Decca's form
"I have recorded in many halls thoughout Europe and America and have found that halls built of mainly brick, older halls, always produce a good,

Fig. 5. Continuation of fig. 4 in range
 .
natural, warm sound. Halls built with concrete and hard plaster seem to produce a thin, hard sound and always a lack of warmth and bass. Consequently, when
looking for halls to record in, I always ooking for halls to record in, I always avoid modern concrete structures. This
statement has been endorsed by most of the other large record companies.

First reflection

in all the famous orchestral halls, the first lateral reflections come from the side balcony faces. Their timing is exactly central seat in the Leipzig Gewandhaus, with only 12.5 m between the balcony aces, had an initial time delay gap of around 41 ms . Vienna Musikvereinsaal with 15 m had 49 ms , Boston Symphony Hall Concertgebouw (19.3 m) 63 ms . Those figures give a very good idea of the relative clarity and definition, intimacy and density of sound in each of the above halls. As upper-high frequenciesh atmospheric absorption after about 15 metres, Leipzig and Vienna must have the best quality.
Looking at the Kingsway Hall, it is easy to see where it satisfies the main
requirements. Its full width is at the upper limit, 27 metres, with inner walls set on pillars at 19 metres width. But the width between the horseshoe balcony faces, with. a very useful curved reflecting surface beneath them, is only 17 metres at its
widest point. The balcony surrounds the orchestra at a height of 3.5 metres. To be honest, I think that such a horseshoe would bring any large symphony orchestra good acoustical luck. It gives all the
players reflections back early enough, and players reflections back early enough, and
at the right angle, to allow them to obtain at the right angle, to allow them to obtain
good ensemble. The unbroken surfac the microphones (not too strome back oo the microphones (not too strong, min eflected intact, and from a shap consonant to their own. It might be wort copying this reflecting shape in Abbe Road, Maida Vale, Henry Wood Walthamstow, Brent and Warford, to The shape is reminiscent of those marvellous small Italian theatres
In recent years, the Kingsway lease has een shared by EMI and Decca, also subletting it to RCA and other companies ownstairs and many upstairs covered ith cloth. At the moment its everberation time with an orchestra present is about 2.5 seconds.

Hall background noise

Poor Wagner cannot have guessed that in 'Tristan and Isolde', by giving his
shepherd on the rocks a woodwind solo which lasted more than four minutes, he was condemning one of his greatest interpreters - Furtwangler - to recording a duet for English Horn and collaboration between EMI and Londo Underground is not yet such that the engineer's red light area can extent to such nether regions. The rumble of the were Kingsway not such a nood hall. were Kingsway not such a good hall
Moreover the cavernous storerooms and airducts beneath the main floor, which undoubtedly contributes to the warmth of the sound there, develop the tube rumble cruelly revealed by digital recording techniques. The hall is very much alive a all frequencies, even when no-one is in it The presence of 80 musicians is something which you not only feel there, but which element to the music, with myriad small high-frequency extra-musical sounds. The ease of tone and spaciousness achieved in Beecham's 'Scheherezade' and Furtwangler's 'Tristan' have to my ears yet managed to reproduce the 'hush' which was present during the sessions, and which is an integral part of the greatness of the musical interpretations. A bald silence behind the music is the antithesis of this spell-binding, breathless hush, and
unfortunately I fear that Dolby techniques so far, in their valiant battle to eliminate tape hiss and mechanical noise, have also eliminated some of this integral part of the music. Digital recording is proving to be reduce the human element in a performance, and the comment of the acoustic on this human element.

'Singing' decay curve

It would be fascinating to know just why the string sound at the beginning of the third movement of the Beecham 'Scheherezade' is so natural. To write this
article, I went down on my hands and WIRELESS WORLD MAY 1982

$\begin{array}{\|l\|} \hline \text { FRONTAL } \\ \text { SPECTRUM } \\ \hline \end{array}$	REQuency		$9{ }^{\circ}$	27°		$63^{6} 85^{\circ}$	he90 110°	$1355^{\circ} 153^{\circ}$		${ }^{180}{ }^{180}$
-0.5dB	200 Hz	0	-05	-0.5	1.5	15-1.5	-10	-1		0
+0.5	500	-	05	2	15	-0.5-1.5	-0.5 0	\% 15		-0.5
+1	700	0	0	- 1	- 4	-4.5 -5	$\begin{array}{ll}-3 & -2.5\end{array}$	-2		-0.5
-2	1kHz	0	0.5	1	15	20.5	0.05	1.5		4
+10	2	,	-2	-4	-5	-5.5-6.5	$\begin{array}{llll}-7 & -5.5\end{array}$	-4.5-4	-4.5	-3.5
+12	3	0	-0.5	-2	-3	-4 -4.5	-5.5-6	$\begin{array}{lll}-55 & -5\end{array}$	-3.5	- 3.5
+5	4	0	-0.5	-1	-2	-2.5-4	-5.5-6.5	$\begin{array}{lll}-7 & -7\end{array}$	-6	-5.5
-1.5	5	0	-0.5	-1	-0.5	$\begin{array}{lll}-2 & -4.5\end{array}$	-5.5-6.5	$\begin{array}{lll}-7 & -7\end{array}$	-7	-7
-0.5	6	0	1	3	25	$2-0.5$	$\begin{array}{lll}-2 & -2.5\end{array}$	-3.5-4	-45	5-5
+1.5	7	0	1.5	5	7	6514			-2	-2.5
-2	8	\%	2	8	12	125		107	4	25
-8	9	0	15	7	10	125135	12.15	14	15	- -0.5
-10.5	10	0	1	5	5.5	885	25.7	350.5	-1.5	- -2.5
-10	11	0	0.5	1	${ }^{-1}$	245	$0.5-1$	$\begin{array}{lll}-1.5 & -4.5\end{array}$	-2	-2
-7	12	0	05	2	-1	-2.50	-3 -5.5	$\begin{array}{llll}-2.5 & -3\end{array}$	-2.5	-2.5
-2	13	0	+	2	-35		-7.5-10	-6		
+2	14	0	\%	1	-3	$\begin{array}{lll}-7 & -2\end{array}$	$\begin{array}{lll}-8 & -10\end{array}$	$\begin{array}{ll}-8 & -75\end{array}$	-7	$\begin{aligned} & -4,5 \\ & -7 \end{aligned}$
$+35$	15	0		0	-35	$\begin{array}{lll}-8 & -0.5\end{array}$	-85 -115	-8 -7 -7	-7.5	-7.5

Fig. 6. Vertical differences in timbre (equal for both ears) compared to sound reaching us
from straight ahead at eye level. From Mehrgardt and Mellert.
knees, and with the generous help of the Kingsway caretaker, measured the variou istances, counter-checking them agains the few remaining plans of the hall. So please do not expect total accuracy 'singing' tone, characterize certain crescendo in the decay curve. Just as w can all sing better in the bathroom, because the acoustic supports us, so the
'singing' curve gives a lift to the performers, and allows the music to take wing, without need for forcing. (I think that adding a short peak of this nature to a dry recording would give more musica results than the general confusion caused has the formula for its production in a hall Guildford thinks that it needs a large area of paraliel surfaces above the highest seat, as in Vienna, Boston, Amsterdam, etc Joan Sutherland (and I) think that it needs
also a set of hard surfaces around the hall at the level of the performers. Schultz that it needs a filigree of smaller surfaces for the very first reflections. It is probably a combination of all three.
For the Beecham
For the Beecham sessions, with the
orchestra orchestra facing the organ, the
microphones were about 2 metres in front of the stage. For an instrument just under the microphone this gives the following sequence of delays in the reflections from various parts of the hall after the original

Stage front, 14 ms ; upper stage front,
30 ms ; side balconies, 48 ms ; back 54 ms (first frontal reflection); ceiling, 57 ms (larger); diagonal walls beside organ, 73 ms ; side walls down stairs, 81 ms (larger); arches between side pillars and
inner walls, 93 ms (et seq.); ceiling curves, 100 ms (larger); backwall downstairs, 105 ms (larger); curves organ ceiling, 111 ms ; side wall upstairs, 133 ms (larger); back wall upstairs, 147 ms (larger) Some of these figures should be higher,
where the reflection can only come back to
the microphone with the help of secondary surface, such as side wa
upstairs/lower ceiling. As the microphon is not very sensitive on top (and fickle memory suggests that the stereo
microphones were hung unside microphones were hung upside down for 'Scheherezade'), this means that the
effectively larger reflections start abou effectively larger reflections start about singing tone is based on a growth up to peak in the decay curve, the peak reaching from 100 to 150 ms . Amsterdam puts it even later. By Sugden's standards o presence' and 'weight' Kingsway has
quite a lot of powerful reflections to offe within the first 105 ms , because the larger reflections continue to return up to 14 ms , the substantial and lengthy support of the
musicians is assured, before the riotous ping-pong of the subsequent reverberation

Fig. 7. Vertical differences in sought pressure perceived equally by both ears.
90° is overhead, 180° behind.

Curve

Robert Lloyd, the bass, has observed that wherever there are a lot of curved surfaces the acoustic tends to be very good. When the curves are concave, they may match
the shape in which the sound waves first reach them, and thus reflect them well When the curves are convex, they distribute the sound waves evenly over wide areas. Kingsway is rich in both types curved one way or the other, with many interim small reflections, such as curve over doors, etc. I hope sincerely that this article may stimulate others to copy them, above al because of the initial long horseshoe curve of the balcony face and it undercurve. For a full symphony orchestra it comes at an ideal moment to break up the sound, and is as worthy of respect as shell in the Boston Symphony Hall. If you wish to copy a Stradivarious, all details are relevant!

Langmuir thin-film trough for molecular electronics

Collaboration between scientific instrument makers Joyce Loebl and a number of research establishments, especially Dur-
ham University, RSRE Malvern and ICI, ham University, RSRE Malvern and ICI, world's first commercial ultra-thin film "growing" equipment. The films in question are monomolecular layers of a class of materials floated on a liquid surface,
usually water transferable to a solid surface by passing it through the liquid. The material originally used by the pioneer o this technique - Irving Langmuir of General Electric back in 1917 - was the soap-like fatty acid salt sodium stearate,
but other materials and their deposition on solid surfaces were subsequently investigated by Langmuir and Blodgett, one result being the development of glass anti-reflection coatings. Chief property of the materials used is a rod-like molecule, one
end of which is attracted to water and the other end repelled so they stand end-on (assuming the material is correctly compressed). But the trough is aimed at possible new applications L-B films tha arise largely out of microelectronics tech are becoming important in what is called molecular electronics - the "science of

Reversal

It would be interesting to know whethe sharp-eared listeners with refined equipment can detect the differences in
recordings made in Kingsway the other way round with in Kingsway, the orher way round, with the orchestar scack to
the organ. Many recent opera recordings use this setup, which puts the singers in better relationship to the orchestra, and allows them to move as though on a stage. It also allows the full depth of the voices to
develop, in the essential $8-10$ metre develop, in the essential $8-10$ metre
distance to the main orchestral microphones.
But this way round, the reflection pattern for the orchestra is changed. The low front of the stage and the small upper stage
must substitute for the 3.5 m high curve of the long back balcony face. The frontal, early deep-bass reflection at microphone height at 54 ms has been replaced by a very early one at about $8-10 \mathrm{~ms}$. The difference ought to be noticeable to keen listeners as
this new reflection is behind the microphones.
Awareness
Perhaps the foregoing analyses of several Perpaps the foregoing analyses of several
aspects of hearing will help listener
towards a greater appreciation of colou and texture in sound. The measurements of timbre are far from complete, and more details are due to be published next year,
covering the whole of the upper right covering the whole of the upper
hemisphere of our field of hearing.
When stereophony was introduced analyses of aural localization mentione the three systems available to our body giving the greatest importance to the
timing of impulses, much less to intensity, and virtually dismissing timbre differences as inessential. It remains to be seen whether in fact timbre is not the Cinderella of the trio, ready to blossom into the most recognized and espoused for its true recognized and espoused for its tru
worth.

Further reading

Analyses of musical qualities and hearing: F. Sound and Vibration, 1980, vol. 6 ${ }_{\text {pp }}$ 110-138. Musical Times, Jan./Feb./-62-66. Timbre lists; Musical Times, $\underset{\text { Jin./Feb./Mar. 1981 }}{\text { Timbre }}$

NETWORKING SMALL COMPUTERS

Simply transferring a program or data from one computer to another by telephone is not too great a problem, but if a number of remote computers are to work together regularly efficiently. This article describes such software designed for Pet microcomputers and outlines networking generally.

As personal computers become more popluar, the need for simple methods of them increases. Eventually, it may be possible to exchange this information through some form of readily accessible global communications network, but a present, we have to make the best possible
use of the facilities available. Some of the more important information dissemination techniques currently being explored are - teletext broadcasts

- viewdata systems, such as Prestel

Each of these approaches has it advantages and disadvantages. In the UK, experiments have been carried out using Ceefax and Oracle as a means of distributing software ${ }^{1}$ but these methods
can only be used to access information can only be used to access information
from a central point. With Prestel, two way information exchange is possible, but there are two categories of 'user' - the ordinary customer, who can only receive and examine pages of stored material, and
information providers. The major drawback of this method is that not all users can be information providerst. The Council for Education Technology is currently investigating this type of information dissemination in conjunction A truly distributed computing network ${ }^{3,4}$ is the third approach to program and data distribution. Such a system has the advantage of allowing totally unrestricted i-directional data exchange between any
wo parties. In this article I describe using the public switched network (p.s.n.) as a means of distributing programs and data between owners of personal computers.

Source program transmission

The distributed computing system's architecture significantly influences the ype of data it can accommodate. Broadly categories - one in which intermediate data storage is available, and one in which data transfer is direct.
In Fig. 1(a), the microcomputer owner t site \mathbf{X} is able to dial the telephone British Telecom say that potentially all users
can be information providers so presumably Dr can be information providers so presumably Dr
Barker refers to cost limitations. - Ed. Barker refers to cost imitaions. - Ed.
Dr Barker is at Principal Lecturer at
Department of Computer Science, Teesside
and Department
Polytechnic.
WIRELESS WORLD MAY 1982
by Philip G. Barker* number of the owner at site Y and then context of data exchange, transmission takes place as if the two microcomputers were linked together directly ${ }^{5}$. No intermediate data storage is available so error detection and correction procedures used for receiving the data. Messages passing over the communication network are susceptible to corruption by noise or crosstalk and as a result, if the receiver fails to respond to
transfer is inhibited.
In Fig. 1(b), the microcomputer owner at point X can store material in a mainframe at site V or W for later retrieval. Provided hat the computers at points Y and Z can meet all the necessary
access control requirements, they too can gain access to the data. With this kind of network, information can be shared easil and distribution to other geographica Details of using a microcomputer as an interactive terminal, in conjunction with the public switched telephone network ${ }^{6}$, ${ }^{6}$ and of using a microcomputer as an
intelligent terminal ${ }^{8}$ have been presented. In reference 8 , algorithms for information file transfer between a mainframe and microcomputer are discussed in detail, These files may contain machine-code programs, high-level (source-language)
programs or data. Using the software programs or data. Using the softwas between one microcomputer and another (via a mainframe) is reasonably straightforward but a decision has to be
made regarding whether the programs are
(a) Direct transfer

Fig. 1. In (a), the public switched network is used to link two computers together directly. Messages passing over the network are susceptible to corruption by noise or crosstalk the receiver fails to respond to the transmitter, data transfer is inhibited. Data from any of
the three microcomputers shown in (b) may be stored in a mainframe computer and retrieved later. Using this stype of network, certain codes can be imposed to restrict acce of information from the mainframes to those microcomputer owners with knowledge of
the code.
to be transmitted in machine－code or source－language form．
Factors influencing the ease with which programs may be communicated are
－the level of language used
accepted language standards and the ability of programmers to keep within limitations imposed by these standards
compatibility of the computers used． －compatibility of the computers used． sufficient to justify transmitting program files in source language form rather than as machine－code memory images．In this context we have been examining the problems associated with transmitting
both Pascal and Basic programs over the p．s．n．between microcomputers and p．s．nframes．Some interesting results have meer obtained－a few of which are described here．
Files transmitted between the two
computers consist of a contiguous set of computers consist of a contiguous set of
characters．Certain special characters interspersed in the sequence，for example end－of－line $\$ 0 \mathrm{D}^{\star}$ ，impose a simple record structure on these files．That the files may
not be physically stored in this way in either the source or destination computer is of little consequence as far as this article is concerned．

Loading Basic from secondary

storage
Once a Basic program has been ransmitted from a remote computer and stored locally on a secondary storage medium such as a tape or disc drive，it is a simple matter to load the program into memory for subsequent execution．How type of microcomputer used．To illustrate the purpose of this article，specific descriptions pertaining to the 3000 series Commodore PET microcomputer are The fuded
The function of a loading program is to econdary Basic statements contained in a
 apropriate format，and store them at the vailable．Functional requirements of such a program for the PET are summarized in Fig．2（a），where it can be seen that the storage area for Basic programs starts at
$\$ 0400$ and ends at $\$ 7 \mathrm{FFF}$ where 32 K of $\$ 0400$ and ends at $\$ 7 \mathrm{FFF}$ where 32 K of memory is available．Obviously，the memory will slightly reduce the amount of space available for other programs．
One of the loading program＇s main tasks is to convert the incoming source code to a code which can be stored in the computer＇s represented in Fig．2（b）．When the source code is stored，each statement consists of a two－byte pointer，a two－byte encoding of the statement number，a sequence of bytes representing the original source line，
and a byte containing the＇end－of－line＇ marker．Further details on how Basic ${ }^{*}$ The＇dollar sign＇indicates that the number This is not the standard method of indicating hexadecimal numbers，but is familiar to most
users of the microcomputer concerned．－Ed．
（a）．Principle

（b）Comparison of internal and external forms of Basic

INTERNAL FORMAT

408	45	$4 C$	$4 C$	$4 F$	22	00	18	04
0410	14	00	58	B2	33	$A A$	32	0
0								

 | 0420 | 32 | 00 | $2 C$ | 04 | 28 | 00 | 99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllll}0428 & 58 & 2 C & 59 & 00 & 38 & 04 \\ 32 & 00\end{array}$ $\begin{array}{llllllllll}0430 & 99 & 22 & 47 & 4 F & 4 F & 44 & 42 & 59\end{array}$ －

Step 3：if＇end－of－line＇，go to step 6
 $\begin{array}{ll}\text { Step 5：} & \text { store source character } \\ \text { buffer then go to step } 2\end{array}$ Step 6：prepare for operating－system en－ 5te 7．try routines
Step 7：convert source statement held in buffer，enter into Basic memory Step 8：$\quad \begin{aligned} & \text { area，then go to step } 2 \\ & \text { pass control back to Basic com－}\end{aligned}$ pass control back to Basic com－
mand mode with a＇READY＇ message．
As was suggested earlier，step 7 will probably be carried out by a＇borrowed
code＇，and the remaining steps will be implemented by the operator，see Fig． 2（c）．An assembly－language program for the above algorithm－for Basic source
files on cassette－is shown in Fig．3，and a complementary flow diagram is shown in Fig．4．When invoked，the initialization code copies $\$ 94$ bytes，starting from $\$ C 34 \mathrm{~B}$ ，in the slot reserved for it through manipulation of the assembler location
counter．When this is completed，the loading operation starts．The program uses a subroutine called TPREAD to transfer a block of data from cassette into the relevant buffer area．In turn，this routine makes use of the operating utility code
commencing at $\$ F 855$ ．Characters are then WIRELESS WORLD MAY 1982

		荡○。愛㟥晏 のぁぁぁ
$\stackrel{\infty}{\text { ¢ }}$	－	를읏은
号 W ¢	w	
88ヘ		
		す88

copied one at a time from the tape buffer $\$ 027 \mathrm{~A}$, across to the Basic input buffer, registers respectively as pointers in the indexed load and store operations. Each time an end-of-the-line character, \$0D, is
encountered in the input data-stream encountered in the input data-stream
(INCHAR) an end-of-statement marker, $\$ 00$, is sent to the output stream (OUTCHAR) for placement in the Basic buffer. Subsequently, at step 6, the pointers at $\$ 77$ and $\$ 78$ are set to point to the memory area containing the new
statement. A subroutine call to the operating system utility CHRGET is then made. This is essentially a line-fetch routine that sets up the next Basic tatement for processing. More details on how the routine operates are given
elsewhere ${ }^{10,11,12 \text {. Once the CHRGET }}$ routine has been primed, the code for converting/inserting the new line into the BASIC program area can commence. Further source statements are then code, $\$ 00$ for tape files, detected on INCHAR terminates the loading process and passes control back to Basic direct"READY" mode with the prompt A major A major disadvantage of the loader
shown in Fig. 3 is its lack of identity checking. Inherent in the program is the assumption that the tape will be positioned at the point from which loading is to commence; the first block (program
identity) is then skipped over. If necessary, it would be a simple matter to replace the first reference to TPREAD line 21) by a call to asubroutine that WIRELESS WORLD MAY 1982
subroutine could be used to ask the operator for the name of the file to be oaded and then automatically position the tape ready for loading. A routine of this type is essential in a loading program
designed for handling source programs from discs.
To enable the loading program shown in Fig. 3 to handle disc files, two additional subroutines are needed: one to open the disk file, DKOPEN, and another to read of each of these are presplementations of each of these are presented in Fig. 5. outined above, that is, it prompts the operator for the name of the file to be oaded, checks its validity and then returns an appropriate message. The DKREAD routine emulates the action of the tape changes necessary to the code listed in Fig. 3. Indeed, only three changes are required; the reference to TPREAD in line 21 must be changed to DKOPEN and that to TPREAD (line 65) must be altered to line 62 must be changed from 1 to 8 .
As a means of checking that tape cassette emulation was a reasonable approach o use, a second version of the disc loading program was written using a different ap-
proach. This involved reading the whole of the disc file into memory, storing it, and then processing it as an internal file. Other han the slight modifications needed for he revised input method, no majo in Fig. 3 were required and no de detectable difference in performance between the two disk-loading programs was observed. Furthermore, as can be seen from the fo
lowing table their load size differed by only five bytes.

Tape loader Tape loader
Disc loader 1 Main
code
257
257
242 dKopen dKı
-

152 | | - | 2 |
| :--- | :--- | :--- |
| 152 | 95 | 5 | The loading programs can be located in The loading programs en er or in any part of the memory space available for program loading. Whe siting these programs,

factors must be consider

- that the programs do not over-writ
that the programs do not over-write
themselves while running (this is usually caused by locating them too near the low end of memory), and,
- that they do not interfere with any of the operating system support software that may be partly in r.a.m. (for
example, DOS support uses r.a.m. above $\$ 7 \mathrm{EAB}$ in 3040 disc-based 32 PET systems).
Each of these restraints can be avoided by using an appropriately structured programs are to be stored in r.a.m. their security and effectiveness depends on finding a suitable memory space into which they may be loaded and run Unfortunately, disc loader 2 is too large to
fit into the tape cassette buffer areas, $\$ 027 \mathrm{~A}$ through $\$ 03 \mathrm{F9}$, but its main body and the smaller of the two input routines (DKREAD) easily slot into this area; DKREAD could now reside at the high end of r.a.m. above about $\$ 7 \mathrm{E} 10$, the exact
location depending what other software is present in this area. Because the version of the loading program for handling tapebased source files is too large to be stored in cassette buffer 2, as with the DKOPEN routine, it would also need to be positioned Similar arguments apply in the case of disk loader 1. Whatever parts of high r.a.m. are used, the limit of Basic memory would need to be lowered by suitably adjusting and $\$ 35$. Each
bach of the software systems described from tape/disc files into memory ready for execution. These files memory ready for been created by program transfer from another remote computer through the public switched network or a private communication system. Alternatively, they may have been prepared by an editing tape or disc. Because these files are in conventional ASCII form rather than in internal machine-code form they are more easily exchanged between different types

omparing load times

Given that there are now several ways of bading Basic programs into memory some onsideration of loading times would be comparisons to mere
the relative spe. the relative speed of loading source mage programs, a the relative speed of tape loads compared with those from disc.

To carry out the above comparisons a
simple program generator was consimple pro structed. This consisted of a series of Basic (as output) another Basic program. This (as output) another Basic program. This
could be written as an ASCII file to tape and/or disk. Furthermore, once processed by either of the loaders described above, this program could also be saved in the mand. The program consisted of 1000 statements whose average length was about 22 characters. Its load size was 19 K bytes. Measures of the time required to load this program under different conditions are

- time to load source program from tape,
1037 s

1037 s

- time to
- time to load source program from disk,
- tape load time for SAVEd program,
- disk load time for SAVEd program, 10s.
There are two observations immediately apparent. Firstly, loading source programs much slower than loading memory much faster than, loading from disc is ver elationships could have been predicted intuitively and so the only value of the
above figares lies in the quantitive comparisons they permit. From the values shown it can be seen that disc loading is bout 35 times faster than tape loading
only about four times faster in the case of ource-code loading. In the latter case, ook only 11 seconds to read the source would suggest that about 96% of the program loading time is devoted to converting source statements into a form suitable for storage, and storing the Similarly, in the case of tape loading, it
takes about six seconds to read a block from tape into memory. The test program contained 131 blocks, i.e., 192×13 characters, and so its input/output time
would be about 786 seconds. This means would be about 786 seconds. This mean hat only 24% of the program loading time is spent on conversion operations. It converting and inserting programs in memory is the same for both programs 249 s for the disc loading program and 251 s for the tape version. This means that the program into its disc equivalent do not influence the program's performance characteristics. These results illustrate the advantages of memory-image loading over probably prefer to sacrifice some efficiency to make their programs more compatible with computers of a different type.

References

Hayman, M., Brighton project sets out on
the micro road, P ?
1981, pp. $75-76$.

Technical Developments Programme Celesoftware Project, paper CID 81.2, 198 3 Cannon, D. L., and Luecke, G., Understanding Communications Systems,
Radio Shack, ISBN: 0-89512-035-6. Radio Shack, ISBN: 0-89512-035-6.
Davies, D. W., and Barber, D. L. A., Communications Networks for Computers
Wiiley, ISBN: $0-471-19874-9$. Wiley, ISBN: 0-471-19874-9. Campell, G., Commodore 8010 modem,
Commodore Club News, July 1981, p. 18 . Nick Hampshirr Publications, 19 . 18
Hobhouse Court, Whitcombe HC2). 6 Barker, P. G., Using a Microcomputer as an
Interactrive Terminal, Interactive Systems Interactrive Terminal, Interactive Systems Research Group Working Paper, Apr. 198
(Dept. of Computer Science, Teesside Polytechnic, County Cleveland). Barker, P. G., USing the PET as an
Interactive Terminal Interactive Sy Interacive Terminal, Interactive Systems
Research Group Working Paper, Jun. 1981 8 Barker, P. G., Algorithms for Intelligent Terminal Operation, Interactive Systems 9 Donahue, C. S., and Enger, J. K.., ET/CBM Personal Computer Guide, Osborne/McGrain
6, pp. $312-314$.
0
Computabits., Ltd, pp. PET-78. Revealed,
Doyle, D., DIMP:A A Machine Language Input, Commodore PET Users Club Newsletter, vol. 2, issue 8, 1980, pp. 19-20,
(ICPUG, 109 York Road, Farnborough,
Hants).
12 Doyle, D., DIMP Revisited, Commodore
PET Users Club Newsieter vol. 3, Issue 2, PE80, p.31.

Teledon videotex in UK

The first private viewdata system based on Teledon technology has been introduced by Poulter Computervision, a new company in the Poulter adverusing and marDepartment of Communications, Teledon is an easy-to-use system to enable text and high-quality animated images to be ransmitted to tv sets. It was chosen for audiovisual communication by Poulter
largely because of its impressive graphic capability.
The company have moved fast since they discovered it late last year. In fact Graham Poulter told WW he didn't even
know of it until 14 weeks prior, when know of it until 14 weeks prior, when
Peter Ashley (now a director) told him of it after seeing it on an Australian NEB trip. They now have sole UK rights to Teledon, negotiated with the CDC licensee Norpak. Two equipments are available, the sim-
pest being a decoder with 64 K of usable plest being a decoder with 64 K of usable mapping and holding software) controlled by a 6809 microprocessor and fed from a cassette player. Up to 200 frames or slides can be isplayed in any order, gressively. With a modem attached, 10 pages of information can be recorded in 60 seconds - ten times faster than other viewdata systems of the alpha-mosaic
kind. The other terminal is an information provider's graphic creation unit with digiprovider's graphic creation unit with dogi-
tizing tablet, colour monitors, two floppy disc drives and PDP11/03 computer. With 40
about ten minutes' learning time, it is claimed, images can be created by retrieving an image from a library to edit, by sketching or tracing drawings on the
tablet, or by using high-level commands defined as geometric elements. Animations of any length are possible and the combinations of colours with grey shades are unlimited. A page of text takes about 5
minutes to assemble while a chart might take 10 to 15 minutes.
Secret of Teledon is the picture descripion instruction coding that describes
lines and rectangles, three for arcs, more or polygons, hence the name alpha-geometric. Images can also be described by scanning point-to-point, and they are re-
constructed to whatever resolution the receiving equipment allows. Among claims made for it are future equipment compatibility as well as future information compatibility, easy conversion to alpha-mosaic more CCITT videotex-attributes than any other scheme. Teledon is in regular use in Canada, on trial in the USA, and European rights have been bought by Siemens.

WIRELESS WORLD MAY 1982

DIGITAL TELEVISION STANDARDS

Towards a worldwide compatibility for broadcasting studio equipment at recent meetings of the CCIR in Geneva, decisions were taken which will have an important bearing on the introduction of digital systems into television studios throughout the world.

Discussions on digital video coding have been going on for many years; in Europe they have taken place mainly in the EBU. fact, the CCIR was largely responding o a submission from the EBU reached members and with industry, other broadcasting unions and the American MPTE.
It had long been accepted that to obain the maximum benefit from digital components of the video signal (e.g. luminance and colour-difference signals separately throughout the digital studio rather than combined into the composite as in most of the analogue studio operaions of today. The use of component oding will also ensure commonality of quipment design throughout the 625 line world and to a valuable degree with ment on the basic parameters defining ment on the bas signal.
There may be a case for establishing in ue course a compatible family of coding airements, e.g. of ENG at que extreme
by A. Howard Jones BC Research Departmen and high-definition television at th was to specify the standard that will used within all of the main studio equipment and at the inputs to the recording and transmission equipment used for inernational programme exchange. It was agreed at Geneva that the main of 13.5 MHz for luminance and 6.75 MHz for each of the two colour-difference signals. This corresponds to 864 25 -line countries and 858 and 429 mples per line respectively in 525 -line ountries.
8-bit line
8-bit linear p.c.m. coding will be used nd it was agreed by most delegations ndicated in Fig. 1 ges set as indicated in Fig. 1 gures will have been formally write into the Recommendation by the time of The author is chairman of EBU Specialist Group VI-
TID in which much of the discussion on standardizaViD in which much ,

CODING RANGES

255 - (11111111)
239-Maximum - 11101111
128-Zero volts-(10000000
16 -Minimum - 100010000 COLOUR DIFEREOOOO - COLOUR DIFFERENCE

Flg. 1. Coding ranges for the 8 -bit linear p.c.m. system

Fig. 2. The EBU proposal for 625 -line signal and nominal analogue timing for reference ples for each line.
WIRELESS WORLD MAY 1982
he Plenary Assembly next year, together with a statement to the effect that in bot 625 - and 525 -line areas the circuits which process only the active part of the televi-
sion line should accommodate 720 lumi ance and 360 colour difference samples per line. At a sampling frequency of 13.5 MHz , 20 samples occupy somewhat more than The intention is nal active line periods. defined by a blanking operation to be carried out when the signal eventually merges into the analogue composite vorld. Meanwhile, an appropriate positioning of the 720 samples (Fig hows the EBU proposal for 625 -line sigiming for reference) will ensure that the sstem will accept the whole of an analsue active line at its input regardless of actual timing within permitted The ado
nsure maximum this specification will ment throughout the world and will lay e foundation upon which further specifications, covering studio interfaces, digistructure to be used on international digital links, can be built.

Corrections

Remote control for a hi-fi system. Unmarked components in Steve Kirby's article in th
March issue, page 54, are p-n-p transisto Fig. 1 and $3.9 \mathrm{k} \Omega$ for its base-emitter resistor Transmitter diodes are high-power types - R Components.
"standby" and "normalise" should b transposed on the keyboard. Notes on setting
up the link, a simplified tone circuit, and p.r.o.m. listing will be publishe circuit, and p.r.o.m. listing will be published
next month In the mean time they can be ob-
tained by sending a stamped addressed tained by sending a stamped, addressed enve-
lope to Steve Kirby at the Department of Electronics, University of York, Heslington, York YOI SDD.
Heating-fuel saver. The introductory paragraph states uhat the outdoor temperature
sensor is not essential but in fact, the scheme would not work without it. The non-essentia part is the meter to indicate the reading of the
sensor. If this is not required, the milliameter sensor. If this is not required, the milliameter
and $\mathrm{IC}_{2 \mathrm{~b}}$ can be omitted. In the first paragraph of the main text a d-to-a converter has been
misprinted as a data-a converter? misprinted as a 'data-a converter'. Digital, multi-track tape recorder. Contrary to
the impression by the April part of this article it was not the final section. A further part on the
playback facility will be published in the next ${ }_{\text {BBC }}$ micro. See News of the month.

Tracking vehicles

Disclosure of hitherto secret Home Office guidelines on the police use of "bugging" and other electronic equipment has drawn attention to a form of surveillance that has of suspect vehicles by the attachment of a miniature transmitter which can then be ocated using sophisticated fixed or mobile Doppler-type v.h.f. and u.h.f. directionthe usual problems of accurate d / f in builtup areas. Equipment of this type is made in several countries, and indeed two years ago Rohde \& Schwarz specifically des-
cribed their PA002 and PA005 systems as cribed their PA002 and PA005 systems as field of personal protection or even in frailing 'prepared' vehictes". From fixed bases such equipment can locate an urban transmission to within about 100 metres. equipment that would have little difficulty in following a vehicle at a discreet distance. Direction-finding, the first application of a radio navigational aid early this century is once again in vogue. Marine v.h.f.
d / f systems in the English Channel supplied by Racal have proved their use in sea rescues. American portable (man-pack) d/f equipment is currently being promoted for military detection and tracking of
armoured vehicles.

Broadcast relays

For several years, some of the European external broadcasting services have been
using satellite circuits to carry programmes using satelilite circuits to carry programmes
to their overseas relays. But most of these built primarily for telecommunications services.

However, Marconi Communication Systems have recently announced a Commonwealth Office for a 10 -metre, re-ceive-only, Standard B earth station to be located on Masirah Island, off the east coast of Oman, to be completed this year. This station is expressly to receive the BBC Overseas Service programmes for
retransmission on the high-power FCO retransmission on the high-power FCo lay Station, including two 750 kW m.f. transmitters.
The users of extremely high-power h.f. over-the-horizon radar and broadcasting
stations may have noticed with some stations may have noticed with some
concern a report of recent joint-work of the Max-Planck-Institut für Aeronomie and the University of Leicester (Nature, 25 February 1982). This shows that the ionos-
phere has non-linear characteristics such phere has non-linar cparacter power, sig nals received at remote sites decrease with 42
additional power. The optimum power is
additional power. The optimum power is
usually not much more than about 6.5 usually not much more than about 6.5 rently used by some broadcast and radar
stations.

Mobile radio and s.s.b.

The outlook for the use of v.h.f. single the private 5 kHz channelling in the private-mobile radio or in the bright - and seems to depend on whether the fast-acting, companding-type a.g.c. system being developed by Dr McGeehan at Bath University proves suitable for incorporating into s.s.b. mobile phones. The intensive work in the UK over the
past few years on the Wolfson project for past few years on the Wolfson project for
mobile s.s.b. has failed to produce the clear-cut results needed to convince users. Completely independent user-trials by British Telecom Research and by the Home Office, and related trials by manu-
facturers, all seem to have shown that on frequencies of the order of 160 MHz , s.s.b. equipment (without companding) does not provide fully equivalent performance to that of 12.5 kHz channelling f.m.
systems and is significantly degraded in comparison with 25 kHz channelling f.m. The British Telecom results suggest that s.s.b. also requires a much higher co-channel interference protection ratio (about 20 dB) which would mean that there could be
much less re-use of channels, substantially reducing the theoretical spectrum-savin advantages of s.s.b. The earlier Home Office trials highlighted the problem of Doppler frequency shift and the need for an extremely good a.g.c. system if speech
quality is to be maintained above 200 MHz with vehicles travelling at more than 30 km / h.
The BT trials (Electronics Letters, October 29,1981) used s.s.b. equipmen
specially designed to assess the suitability of the mode as a replacement for f.m. in the Radiophone service, with tests carried out under carefully controlled conditions. Speech of a well defined level was
transmitted simultaneously over three transmitted simultaneously over three
radio links (12.5, 25 kHz f.m. and s.s.b.) and recorded in a moving vehicle. The recordings were later carefully assessed in an acoustic room with simulated vehicle noise, under conditions of fading, interfer ence and signal level. The conclusion was formance compared with 12.5 kHz f.m. by as much as a change from 25 to 12.5 kHz f.m. With co-channel interference, "mean scores" were: s.s.b. $1.8,12.5 \mathrm{kHz}$ f.m.
Unless the Bath University work on a.g.c. reverses the situation, early widespread adoption of s.s.b. seems unlikely.

Marine communications

The official opening of the Marecs-A mari time satellite communications system on cup. The planned inaugural call by Ken neth Baker, Minister for Information Technology, had to be called off at the last moment due to the aftermath of "intense solar activity"
While we all know how easy it is for press and public demonstrations to go press and public demonstrations to go
adrift, this incident must have been particularly galling for those promoting a sophisticated system that seeks to high light and then supersede the radio propa-
gation vagaries of traditional marine radio! gation vagaries of traditional marine radio.
Shipping companies have seldom proved eager to introduce new communications or navigational systems unless the costs can be off-set by lower marine insurance rates - so that 24 -hour reliabil-
ity must be counted a vital consideration. ity must be counted a vita cobsideration.
There can be little doubt that marine satellite systems offer many advantages for deep-sea vessels, and will eventually supersede long-distance h.f., just as marine v.h.f. has gradually won through
for short-range operations. But I wonder i I am alone in recalling the high communications efficiency of the old pre-war pas senger ships using "long waves" above 2000 metres?
When static was not too bad, the highly professional radio officers and coast sta tions could handle traffic in a manner seldom heard on the other marine frequen-
cies. Today, with few large passenger cies. Today, with few large passenger carrying ships, marine traffic tends to b of the ships or personal messages of the crew. As with all radio communications "progress" seems to be a matter of everdars have long paved the way to microwaves.

Topics in the ai

M. Hansen and J. P. Loughlin of the American Naval Ocean Systems Center, San Diego have described (IEEE Trans.,
Vol. AP, No 6, November 1981) a fourelement adaptive aerial array that automatically minimizes multipath reception. Typically, at frequencies between 3.4 and 9.3 MHz over a 234 km over-ocean path than 15 dB . George J. Flynn of Washington Univer-
sity St Louis, Missouri has forecast that if sity, St Louis, Missouri has forecast that if
the rate of increase of objects in orbit conthe rate of increase of objects in orbit con-
tinues to increase, the first collision betinues to increase, the first collision be-
tween satellites can be expected in the next 10-15 years. He warns: "A reversal of this trend is required to prevent a serious WIRELESS WORLD MAY 1982
hazard to orbiting satellites in the twenty first century". Although the number of objects in near-Earth orbit decreased be tween 1978-1980, they have since in objects, in October 1981. 137 new object were associated with the US Landsat satellite, launched in 1978, and 118 wit Cosmos 1275, launched in June 1981.

AMMATEUR RADHO

Licence snafu

Following meetings between the R.S.G.B. and the Home Office, the Home Offic radio licence schedule, as published in Th London Gazette on February 12, containe errors and a revised schedule would be published with a minimum of delay. The they had had "no intention of changing the basis of amateur radio operation in th U. U.S.".

In other words, the sensation caused by
the February 12 schedule was ascribed to to yet another "snafu" on the part of the
licensing authorities - although to the credit of the officials concerned they reacted promptly and fairly when the consequences of the error-prone schedule wer brought to their notice by the
and by many horrified amateurs! Perhaps a light-hearted side of the incident was that, by omitting a key line, the Gazette unwittingly deleted all regulatory differences between Class A and Class B legally operated on h.f. etc, until an amending notice was hastily published on February 26. The Home Office has accepted that the introduction of new power restrictions and mode restrictions errors and may revert to traditional power regulations above 1 GHz at least while the question of "equivalent isotropic radiated

The world scene

No firm announcement about the release, on a non-interference basis, of the 18 and 24 MHz bands had been made at the times these notes were written. All three new leased to amateurs in South Africa were released to
American c.b. licences are reported to have fallen from 16 million to about 10 nillion during the past two years. There WIRELESS WORLD MAY 1982
are just over 400,000 amateur licences in
the USA. A recent survey indicates tha only about one-in-eight instances of radio requency interference (r.f.i.) problem
from all types of transmitters (but basicall due to inadequate electromagnetic compa tibility in consumer electronic appliance etc) are reported officially to FCC ratio that is believed to be roughly comparable wit
A 168 -year-old instructor for the December 1981 Radio Amateur's Examination John Morris, GU6BG1, of the Guernsey Amateur Radio Society - coached six candidates. Five passed both sections while passed, Tim Hodkinson, will have to wai for his licence until his 14th birthday nex June, when he is likely to become (at leas for a time) the UK's youngest licensed amateur.

Here and there

Fifty-years ago, during 1932, the internatinal Madrid conference resulted in the firs clear recognition of amateur radio by dewhat amateurs could and could not do The Madrid conference was one of the last of the international conferences in which no major changes were made to the frequencies allocated to radio amateurs although it was already clear that pressure on their frequencies from rival users was
more intense in Europe than in North America and only with difficulty was the " 1.7 MHz " band retained in Europe. At that time the major ITU conferences wer held every four years.

Detailed observations on and conclusions about the remarkable 5000 -mile 145 MHz rial ionospheric reflection during Solar Cy rial ionospheric reflection during Solar Cy-
cle 21 have been reported by Ray cle 21 have been reported by Ray
Cracknell, 222JV in Zimbabwe, Fred Anderson, ZS6PW in Pretoria, and Costas Fimerelis, SVIDH in Athens (QST, December 1981). They show that high-den-
sity, ionized zones exist 10 to 15 degrees sity, ionized zones exist 10 to 15 degrees
north and south of the magnetic dip equator capable at times of providing circuits between stations up to 5000 miles apart at frequencies up to 432 MHz . They believe unique opportunity to engage in pioneer research".

Amateur satellites

Ivan James, G51J has described, in Oscar News No 36, a novel form of 145 MHz uplinks to amateur satellites in low orbits. The aerial is based on the principles of the
broadband, apex-fed, polygonal loop described by T. Sukiji and Tou (IEEE Trans AP-28, No 4, July 1980). The
system provides some horizontal gain, re system provides some horizontal gain, re-
quires no impedance transformer and can readily be made from soft 8 mm diamete copper tubing. It has been tested on Oscar The six Russian amateur satellites, RS3 to RS8, launched last December have all
been transmitting telemetry data but RS3 and RS4 are not expected to be fully activated until later in the year. The satellites
are in a nearly circular orbit about 1700 km are in a nearly circular orbit about 1700 km above. Earth (periods of about 118.5 to lites in relatively low orbits it is proving difficult to provide accurate predictions for more than a few days at a time. The Russian transponders have uplink frequencies in the band 145.86 to 146 MHz and down
links 29.36 to 29.5 MHz .

In brief

The 10.1 MHz band has still not been
released to American amateurs and there is released to American amateurs and there is opposition from other users. . A "dia-
mond jubilee hamfest" to mark the setting mond jubilee hamfest"" to mark the setting
up of the original "Lincoln $\&$ District Amateur Wireless \& Scientific Society" in February 1921 is being organized by Lincoln Short Wave Club (G5FZ, G6COL) at the Lincolnshire Showground, $4-5$ miles
north of Lincoln on the A15, on Sunday north of Lincoln on the A15, on Sunday
May 9 . The Club is aiming at a 5000 attendance, with trade and "bring and buy" stands plus family attractions . . . Derby Dale \& District Amateur Radio Society has its 2nd mobile rally at Shelley High
School, June 20 . . The Worcester Club has its annual radio rally on July 11 at the High School, Ombersley Road, Droitwich ..The RSGB has forecast 80 trade stands at the 1982 National Amateur Radio Exhibition at the New Alexandra Pavilion,
Alexandra Park, north London from April 15-17... Mobile rallies at Harrogate and Barry (May 23), Hull and Plymouth (May 30), Elvaston Castle, MHS Mercury (June 13). . . With the legalization of c.b. radio would seem that some of the former
users of 27 MHz have moved elsewhere. Recent reports indicate that an illegal group of so-called "International Breakers" have been active on about 6.6 MHz , a frequency that was a "pirate-
haunt" several years ago \ldots. . The Marconi Group recently noted the 60th anni-
versary of the 2 MT Writtle broadcasts in versary of the 2MT Writtle broadcasts in
1922 paying tribute to the efforts of the 1922 paying tribute to the efforts of the
amateurs, grouped in wireless clubs, recognizing that it was their petitioning of ecognizing that it was their petitioning of
the Post Master General that helped set off regular broadcasting in the UK.
PAT HAWKER, G3VA

MICRO CONTROLLED LIGHTING SYSTEM

Hardware for the input side of the lighting system - the control desk Modular construction is suggested to allow for variations in total system size

The input portion of the lighting system the control desk - transforms the positions of the numerous faders into data in he processor memory. To maintain processing speed andem input and output perations are designed so that no proces sor WAIT states are required. This is read ily achievable in the output to the dimmers by ensuring that the access time to each data bus access time permitted by the processor) and the use of a mappedmemory input technique was chosen. However, the analogue-to-digital conversion of the fader positions is inherenis low, and so some metrion speed is required. Three possible methods can be considered.

- Allocate a slow a-d converter to each fader which continuously tracks the analsor addresses each converter in turn to obtain data. The large number of faders in a lighting desk means that this would probably be a very expensive solution. Use an a-d converter which is fast maximum access time of 410 ns. The practical conversion time must be much shorter than this to allow for the multiplex-

John D. H. White and

 Nigel M. Allinsoning of the faders and the sampling of the analogue levels. The cost of high-speed converters and multiplexers means this
solution is also expensive.
Rather than set the co
he processor requirements, set the speed by the desk operator's requirements. For instance, the maximum useable "response ms. Hence use a converter which is fast enough to perform all the conversions required in this maximum response time. The faders can then be scanned by an analogue multiplexer, converted to digital code and stored in a block of memory access this block of memory. The major difficulty with this method is the unambiguous access to a block of memory by both he processor and the converte
The final method was chosen for use in The control desk because units in this prototype system were designed on a modular basis. Each multiplexer connects one of 16 faders to a The authors are at Keele University.

fig. 11. Address decoding is performed by a 4-bit code
common analogue bus and the faders addressed via a 4 -to- 16 line decoder by a 4 bit digital address bus. One a-d converter modules; however, the converter and sample-and-hold circuit used have a total conversion time of $26 \mu \mathrm{~s}$ at a 500 kHz
clock frequency so one converter can clock frequency so one converter can
access over 600 faders within a response time of 20 ms .
The input circuits can be split into three parts - an analogue multiplexer which connects the faders to the a-d converter, the converter itself and associated sample-
and-hold and timing circuits, and the shared memory with access control logic.

Analogue multiplexer module

 The fader connected to the common analogue bus is determined by a four-bit code, and address decoding is performed by a 4-to-16 line demultiplexer (74154), Fig. 1 . fered by level-shifting inverters. Fader potentiometers are connected to a bipolar reference bus derived from the a-d converter internal reference voltage, Fig.As the lighting system scales the channel presets by a master preset control, as mentioned in the first article, this requires the multiplication of stored data. For any reasonable interaction time between fader
position and light output, software multiplication by the processor is out of the question. As described in the final article, fader levels are stored in log form; mulliplication and division become simple addition and subtraction, and an anti-log
look-up table r.o.m. is used to provide the correct code for each output dimmer. Un usually, log-law potentiometers are used for the faders.
The potentiometers can be considered as a voltage source with an internal impedance which varies with slider position. The highest internal impedance is (track resistance) $/ 4$, that is $25 \mathrm{k} \Omega$ in this case. As the output capacitance of each c.m.o.s. switch is about 5 pF , the worst-case switching time constant for 16 switches on
a common analogue bus is $2 \mu \mathrm{~s}$. With sample time for the a-d conversion of $6 \mu \mathrm{~s}$, this gives a significant sampling error. The solution is to introduce a capacitor C_{s} to
the input side of each switch. The percentthe input side of each switch. The percent age error in the final output voitage
$100 \% \times C_{0}\left(C_{\mathrm{s}}+C_{0}\right)$ so for $C_{0}=100 \mathrm{nF}$ the error is only 0.08%. The switching time constant is now about 25 ns ; τ WIRELESS WORLD MAY 1982
enabled, by holding OE (pin 2) low. The LF398 sample-and-hold circuit has more than adequate specifications for 8 -bit accuracy at $6 \mu \mathrm{~ms}$ sample time. voltage is used to bias the fader reference eters. To reduce processing time, fader codes (positions) are first checked to determine if they are zero (i.e. channel not in use); only if they are non-zero will further processing be performed. Contact and
end-resistance in the potentiometers gives a small d.c. offset, even when the channel is not being used. Hence a bipolar voltage reference is supplied to the faders to give a
small "deadband", for which the output code is zero. These references are obtained by buffering and inverting the converter reference voltage by a 747 dual op-amp.

Shared memory and access control

 The memory can be accessed by either the microprocessor or the a-d converter, and multiplexed between the microprocessor and converter. It differs from conventional direct memory access techniques in that the converter and processor have separate The shared memory consists of two AM27S07 (16-word $\times 4$-bit Schottky r.a.m.), and as these devices have separate data inputs and outputs and the a-d he processor-only reads from it no data bus multiplexing is required. Data outputs are tri-state which allows direct connection oo the processor data bus. Address bus multiplexing is performed by two 74125 tri-state buffers; the appropriate one isenabled for read or write operations. For large systems standard 250 ns memory chips may be used instead of the AM27SO7's, but they will require addiional data bus multiplexing.
The eight high-order bits of the proces-
sor address bus are compared with a bit pattern set by eight wire links to determine the page location in the memory map of the input data addresses, Fig. 14. This is achieved in the same manner as the output
addressing decoding described in Part 1 . When the processor needs to read from the shared memory, a read request signal is generated before the system enable signal Egoes low, achieved by AND-ing the signals. The output is latched by the 8085

The ZN427E 8 -bit converter of Fig. 12 crminated processor system's from the lock (generated from the 3 MHz microprocessor clock in the Quarndon de elopment system). The various contro are generated by a 2 -bit twisted ring counter, comprised of two D-type flip-flop (7474). This type of counter was chosen for its simplicity and that all states can be frst state of the sequence gates. The sample-and-hold circuit, the enables the used as a write request for the memor access logic, and the final state is used to lock a third D-type flip-flop. The outpu WIRELESS WORLD MAY 1982

address latch enable signal ALE to ensur that the read request signal is low before E bees low. Timing diagram: Fig. 15. The address buffer and sets the the appropriate mode.

Fig. 14. Eight high-order bits of address bu are
wire links to determine page location in memory map.
enable, E. The duration of the write re quest is long enough to ensure that any
data is always stored in the memory. Since the processor controls access to the memory at all times, no conflict of simultaneous access requests occur

The authors ask us to point out that E_{1} and \mathbf{E}_{2} in Fig. 9 should be inverited, for whic the two spare 7400 gates may be used.

$\frac{\overline{\text { READ }}}{\text { REQUEST }}$
Fig. 15. READ REQUEST enables th appropriate address buffer and sets memory to read mode.

16-CHANNEL DATA ACQUISITION SYSTEM

The article concludes with a continuation of the circuit description, its operation and a sample program for scanning through sixteen channels.

Figure 8 is the timing diagram for the listening sequence. On power-up, the approximately 150 ms via R_{3} and C_{2} to reset the address latch IC_{7} and the addressenable flip-flop IC5.
To select a channel and start an a-to-d onversion, the Basic statement below is PRINT \# DN, "*n"
where DN is the device number ($0-30$) * is the ASCII character "*" n is the ASCII equivalent of the required channel " 0 " to " F ". When the system receives a device number address switches ($S_{5}-S_{1}$ in Fig. 7), the 96 LS 488 will initiate a timing sequence, as shown in Fig. 8 (not to scale). The r.o.m. IC_{6}) decodes ASCII information to binary data, its contents being outlined in Table

1. Four outputs of the r.o.m. give the binary data obtained by converting ASCII " 0 " - "F" to binary 0000 - 1111 and additional outputs are used to detect a "丸") character and a carriage return (CR) purpos
When the first " "*" character is sent (2 in Fig. 8) the \star line goes low (3) and the RXST and RXRDY are pulsed (4) and (5) in accordance with Fig. 5. As the data is emoved (6), \star detect goes high and sets The next data byte is presented (9), representing one of 16 address channels, and as RXST goes high (10), CLK goes (12). RXST and CL K the address latch (14), and data is removed (15)

A Carriage Return is now presented at he data bus (16) and the CR detect (or GO signal) goes low (17), and starts conversion the AD7555 (to be discussed later). This (18), while RXST pulses (19) and (20) CRD is removed (21) and GO is returned high.
The result of all this activity is that one of 16 channels is enabled in the AD7506 cycle of the appropriate channel is started.

aiking sequence

The AD7555 is a $41 / 2 / 5 \frac{1}{2}$-digit a-to-d conversion subsystem. A free-running dhe AD7555 in a 4 bit bic.d. da

* Analog Devices, Limerick, Ireland

WIRELESS WORLD MAY 1982

by Pat Hickey

this application, the DMC signal is controlled by the 96 LS488 handshake signals to transmit the information to the
GPIB. Each b.c.d. data byte is signalled by a digit line which goes low when that byte is being outputted, D0 going low for the most significant digit (sign and first digit), D5 for the least-significant digit. In this application, D5 going low is used to send a arriage return code on the IEEE-488 bus. Although this loses one digit of resolution, it considerably eases the interface Figure
iming sequence highights the conversion ignal (2) (from the listening sequence in Fig. 8) HOLD goes high (3) which instructs the AD7555 to start conversion:
the free-running DMC clock is also
nabled (4). Upon comparator crossing at the end of phase 0 , (the beginning of the quad-slope a-to-d conversion procedure) SCC goes low (5), enabling the 1.024 MHz At the end At the end of the conversion, SCC
returns high (6) and on the next rising edge (7), DAV goes high and remains high for two DMC pulses (9): during this period, the internal buffers are DAVdated with the latest data. After this, Low (11). This is known as the master reset and disables the free-flowing DMC clock. From this point control of DMC is laken over by the TXST handshake during read-back.
At this s
AD7555 is the most significant digitTXRDY is high, indicating that data is ready; and SRQ has been brought low (12) telling the controller that a conversion has

Fig. 8. Timing diagram for the listening sequence.

PARTS LIST		4	150 (5\%)	15
Integrated circuits		6-20	10k (5\%)	15
1,2	MC3441	21	1k (5\%)	1
1,	96LS488	23	10M (1\%)	1
4	$74 \mathrm{C08}$	24	$5.1 \mathrm{k}(1 \%)$	1
5,10	74 C 74	25	6.8k (1\%)	1
5,10	6331	26, 29, 30	10k (1\%)	3
7	74 C 175	27	$1 \mathrm{M}(1 \%)$	1
8	74 C 04	28	20k (1\%)	1
9	AD7555			
11,23, 24	74 C 157	Potentiometers		
12	74 C 30	Rpl	500 multiturn	1
13	74C02	Rp2	200 multiturn	1
14	AD7506			
15	74 C 901	Capacitors		
16	7493	1, 4, 6, 11		
17	LM399	2	0.47μ	1
18	AD517	3	150p	1
19,21	AD301	5	10 ${ }_{0}$	1
20	${ }_{74 \mathrm{Cl} 10}$	7	(polystyrene)	1
22 25	$74 \mathrm{Cl0}$ 74 Cl			
25	74 Cl 4	$\begin{aligned} & 8,10 \\ & 9 \end{aligned}$	$\begin{aligned} & 33 \mathrm{p} \\ & 0.1 \mu \end{aligned}$	1
Diodes				
1-4	led	Miscellaneous		
5	1 N 914	$1 \quad \mathrm{X}_{1}$	4.096 MHz	1
6	4.7 V	$1 \mathrm{~S}_{1}-\mathrm{S}_{5}$,		
1,2,5,22	470 (5\%)	$4 \mathrm{~S}_{6}$-S9	d.i.1. switch	2
3	39k (5\%)	1		

Readback cycle

Data is transferred to the controller via the input instruction INPUT \# DN, R\$ where $D N$ is the device number, and $R \$$ is
an ASCII string. When this statement is executed, the 96LS488 checks tha TXRDY is high (indicating that the first character is ready). It takes the byte and brings TXST in Fig. 10 high (1) to show that it has received the data. This clocks and loads the next data byte (4), and bring TXRDY low (5), acknowledging that the last byte has been received. TXST goes low (6), completing the sequence. This (8). TXRDY goes high (9) indicating that the second data byte is ready.

The sequence is repeated for D1, D2 D3 and D4 (10)-(23). TXRDY goes low 23), acknowledging that D4 has bee received, and TXST goes low (24) to complete the handshake. This clock DMC low (25) and brings D5 low (26) The output from the AD7555 is D5 at this stage (the last and unused digit of the $51 / 2$
digits). However, a carriage return is transmitted to the controller instead, indicating the end of the string, via the data selector (IC_{11}). As D5 goes low, a carriage return (ASCII 13) is presented to the 96 LS988 (27) and TXRDY goes high
(28), indicating that it has a byte (CR) to send. D5 going low also resets the SRQ

Fig. 10. Timing of the readback sequence.
flag (29). The CR is loaded during the rising edge of TXS
The data string received by the controller is a 5 character string encoding a $41 / 2$ digit word. The first character is an encoded version of the sign and most significant digit as outlined in the table.
The program shows a simple method converting the input string $\mathbf{R} \$$ to a number R. A positive or negative over-range (caused by a voltage greater than ± 1.99 volts) is transmitted as " $0 \lll<$ " an " $2 \lll<$ " respectivel
IF R $\$=$ " $0 \lll<$ " THEN PRIN "+VEOVERRANGE" : END IF R\$ = " $2 \lll<$ " THEN PRINT "-VE OVERRANGE" : END
$\mathrm{X} \$=$ LEFT $\$(\mathrm{R} \$, 1)$
IF $\mathbf{X} \$=" 0 "$ THEN $\mathbf{X} \$="+1 . ", ~$
IF $\$=$ THEN $\$="-1 . "$
IF X $\$="<"$ THEN X $\$="+0$."
IF $\mathbf{X} \$=$ " 7 " THEN $\mathbf{X} \$="$
$\mathrm{R} \$=\mathrm{X} \$+\mathrm{RIGHT} \$(\mathrm{R} \$, 4)$
PRINT"READING $=" ;$; ; "VOLTS" END.

Service request and status byte Service request and status in Fig. 11, contains the service request bit (needed in the case of a serial poll), high when a service is requested. The rest of the status byte contains information as to why
service was requested. In this case there is only one reason, an end of conversion caused by Bit 4 high.) The four 1.s.bs contain the address of the last selected channel. The status byte is read during a serial poll and handshaking is performed

System performance

s discussed, the a-to-d converter is operated as a $51 / 2$-digit system, but only
$4^{1 / 2}$ digits are used. The a-to-d conversion 4 ime varies from 1.3 seconds for full-scale negative input, to 1.7 seconds for full-scale

Fig. 11. Service request and data byte
positive input. The conversion time can be reduced by a factor of ten by operating the a-to-d converter in the $41 / 2$ digit mode.
Some minor changes in circuit values and
pin-straps are necessary. C_{7} to - Change R_{27} to $360 \mathrm{k} \Omega$ and C_{7} to $0.22 \mu \mathrm{~F}$.

- Disconnect wire from pin 22 of IC9 to pin $1\left(\mathrm{IC}_{11}\right)$ and pins $2,5,\left(\mathrm{II}_{24}\right)$.
- Connect wire from pin $23\left(\mathrm{IC}_{9}\right)$ to pin 1 (IC ${ }_{11}$) and pins, 2,5 , $\left(\mathrm{IC}_{24}\right.$). - Disconnect pin 8 (IC9) from +5 V and connect to GND.
In the $41 / 2$ digit a-to-d conversion mode only $31 / 2$ digits of information ar ransmitted on the bus.
nals in the range ± 1.9999 volts. Resolution is $100 \mu \mathrm{~V}$ and accuracy of the prototype wire-wrap system was $\pm 200 \mu \mathrm{~V}$. The converter exhibits no flicker or ofset. Ac-
curacy would be improved by using a printed-circuit board and by paying more attention to leakage paths through i.c.
sockets, etc: it is also recommended that

Sign and most significant digit	Output of AD7555	Input to controller	ASCII equivalent
+1	0000	00110000	0
-1	0000	00110010	2
-1	1100	00111100	\vdots
${ }^{+0}$	00111	00110111	7

the operational amplifiers and reference (IC_{17} - $-\mathrm{C}_{21}$) be kept as close to the AD7555 as possible, and as far as possible from the gives information on appropriate p.c.b. lives information on appropriate p.c.b.
layout. Calibration procedure: - Adjust RP1 until pin 1 (IC) at +4.096 V .
+2.0480 V until pin $2\left(\mathrm{IC}_{20}\right)$ is at ${ }^{+2.0480} \mathrm{~V}$. ${ }^{2}$. of the April part of the article: diode D_{4} of tol April part of the article: diode D_{4}
should go to +5 V , instead of ground; IC_{11} is a $74 \mathrm{Cl157}$; IC2 on pin 42 of IC_{3} should be is a 74 C 157 ; IC2 on pin 42 of IC_{3} should be
C_{3}. It is not clear on the drawing that R_{15} R_{20} go to +5 V .
Two programs, for Commodore Pet and Fluke
Two programs, for Commod
1720 A , to scan 16 channels.


```
*)
*)
```

*)

```


```



```
#
```


 M,
    ```
        M,
```

 M,
    ```





Elements of Microprogramming, by D.K.
Banerii and J. Raymond. 434 pages, hardback.
Prentice-Hall, \(£ 18.70\).
The advantages of microprogramming over
hard-wired control logic systems are described from a historical viewpoint prior to a thorough treatment of the theory, practice and
application. A microinstruction is at a lower level than a machine-code instruction; an Add, for example, requires four microinstructions. Microprogrammed control possesses the advantages of flexibility and economy and the
possibility of changing the instruction set or architecture of a computer by altering the microprogram.
WIRELESS WORLD MAY 1982

Digital Control Using Microprocessors, by P.
Katz. 293 pages, hardback. Prentice-Hall,

\section*{Kiatz. 293
f16.95.}

Differences in emphasis between digital processing of signals and the digital control of processes are stressed in this book, which is at a
suitable level for final-ycar degree sudents and suitable level for final-year degree sudents
engineers who are already familiar with analogue control. Sample 8085 programs are included.
Computers and the Padio Amen by Computers and the Radio Amateur, by P.
Anderson. 208 pages, hardback. Prentice-Hall, £14.20.
A thorough and well presented introduction to computers in amateur radio. Presents a very
readable explanation of Basic and assemblylevel programming, and goes on to describe interfacing to amateur equipment and to detail electronic keying and Morse reading.

World's Radio Broadcasting Stations, by C. J. Both. 214 pages, paperback. Newnes Technica Buropean f.m. radio and television transmitters are included in this comprehensive listing of stations. The book, first published in Holland, presents the relevant information to enable a
listener to identify or locate stations in the long, medium and short wavebands, giving frequenc and wavelength, power, co-ordinates of the
transmitters and their poce transmitters and their place names. In the case
of television and f.m. radio, there are columns to indicate channel number, aerial polarization and whether the station transmits in stereo. A number of appendices sist the adrusses on there is a five-language glossary, a frequency/ wavelengt conversion table and a table giving

\section*{CIRGUIT IDEAS}

Waveform synthesizer Here, an \(X / Y\) matrix is used to plot a given sized is divided into a number of time domains and the voltage at the end of each domain is set on a diode-chain potentiomeer. If the length of the time domain is less quency present in the waveform and the number of discrete levels is large, accurate reproduction of the original can be achieved. This circuit lends itself to computer control and expansion.
By varying the 555 -clock
output waveform frequency may be the justed proportionally. A 7493 counter converts the clock signal into 4-bit binary o drive a 4-to-16-line decoder, which in turn drives 16 output transistors through o a common point through a resistor. For certain waveforms, an integrating capacior may be connected accross the output to filter out steps and switching pulses.
D. Somervil

Sussex

\section*{NiCd battery protection}

Essentially a fold-back current limiter with low-voltage detection capability, this cirman 0.35 V on full transmit lod an 0.35 V on full transmit load.
battery applications, is due to the use of germanium as the control element. Only ne control transistor is shown in the simplified diagram although two in parallel are \(\mathrm{r}_{1}\) is held on by a silicon transistor, \(\mathrm{Tr}_{2}\), whose base current flows through zener \(\mathrm{D}_{1}\) and \(R_{1}\). With a 12 V battery \(\mathrm{D}_{1}\) is 9.1 V . In the event of an overload or short circuit the is detected by silicon transistor \(\operatorname{Tr}_{3}\) with mitter-base connected across the emittercollector of the germanium control tranistor. \(\mathrm{Tr}_{3}\) turns on, raising the junction of \(D_{1}\) and \(R_{1}\) to battery voltage. This actio any load is connected. any load is connected.
imilar action occurs if the voltage on 0 V In this falls below \(1 \mathrm{~V} /\) cell, i.e. below .In this case the battery voltage fails to .6 V ) and \(\mathrm{D}_{1}\) (requiring 91 V ) and \(\mathrm{Tr}_{1}\) starts to turn off, initiating the same fold back action. \(\mathrm{C}_{1}\) is included to damp the fold-back loop. A low-value resistor \(R_{2}\) is used to control thermal run-away of \(\mathrm{Tr}_{1}\). . B. H. Stead Salisbury
Zimbabwe \({ }_{50}\)


WIRELESS WOŔLD MAY 1982


\section*{Glitch detector}

Using two fast monostable multivibrators, such as e.c.1. MC10198's, it is possible to detect extremely short glitches. These dehough the pulse is short, it is at least twice as long as anticipated glitches. As the iming diagram shows, normal pulses are Died using an AND gate.
Dastellanza
Italy


\section*{Wideband f.m. \\ demodulator}

Operation of the demodulator relies on the inear relationship between power conumption ( \(\mathrm{I}_{\mathrm{DD}}\) where \(V_{D D}\) is fixed) and operating frequency of c.m.0.s. logic cirbecuuse the internal clock elements have a high clock rate capability which extends beyond the normal range of usage. Measurements indicate that the demodulator will work satisfac eyond 20 MH
The flip-flop is clocked by logic level ransitions and the resultant current flow ent mirror and output components. The

Constant-current supply
This circuit is extremely simple, uses no special components, yet has a very wide range of output currents, \(2 \mu \mathrm{~A}\) to 100 mA in sis ranges. The only limitation to output
is component ratings. It also has a performance that is comparable to more exnsive equipment.
\(\mathrm{Tr}_{1}, \mathrm{Tr}_{2}\) and \(\mathrm{IC}_{1}\) comprise a constantvoltage supply that can be varied from 0 to 100 V by varying \(\mathrm{V}_{\text {ref. }}\). When testing this section, no change in the output voltage
could be detected on both analogue and \(31 / 2\)-digit voltmeters with change of supply voltage from 150 V to 250 V and with sudden application of a 100 mA load. \(\mathrm{Tr}_{3}\) and \(\mathrm{IC}_{2}\) comprise the constant-cur-
rent section, \(\mathrm{R}_{c}\) is the current sensing rerent section, \(\mathbf{R}_{c}\) is the current sensing re-
sistor
choosing the appropriate value of \(R_{c}\) or switching different values, the required current range is obtained.
The voltage drop across \(\mathrm{R}_{\mathrm{R}}\) which equals \(V_{\text {ref. } 2}\) was chosen to be about 0.7 V so that
the error in voltage measurement will not exceed this value plus the drop in the amWIRELESS WORLD MAY 1982
current mirror ensures a minimal interacion between supply voltage and current in he flip-flop - a higher performance miror could be constructed using spare d
The resistor is chosen to suit the mad mum input frequency (the output can swing the full supply voitage, limited only be quiescent device consumption and \(V_{\text {ce }}\) pass filtering to remove input frequency noise. Values shown have been used in a 0.7 MHz f.m demodulator prior to "birdy" filtering and stereo decoding. G. C. Hammond Nuneaton
meter circuit, a total of less than 1V. A multi-turn potentiometer to than 1V. A nabled accurate current adjustment. Capacitors \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) suppress oscillations that would otherwise occur; \(\mathrm{D}_{1}\) and \(\mathrm{D}_{2}\) protect \(\mathrm{Tr}_{2}\) and \(\mathrm{Tr}_{3}\) from possible negaive voltages that may occur due to

operation proved to be of no harm, but IC may need some extra protection if intermittent loading with outputs greater than 30 is used frequently (a diode bezween pins 3 and 7 might help. Ed).
Hussein A. Eassa
Egypt



\section*{DIGITAL FILTER DESIGN}

In the next few years digital filters will be increasingly used in place of their analogue counterparts, not only on account of their accuracy and versatility but also their rapidly declining cost. Authors Cheetham and Hughes introduce the basic theory in this article, give design techniques for a useful class of filters in the next, and describe their implementation by special-purpose microprocessor in a third article.

The conversion of an analogue signal into digital form requires a process of sampling at successive points in time separated by converted to a, say \(T\). Each sample is then to the sampled voltage. The sampling process requires that the analogue signal be bandlimited to below the Nyquist frequency \(1 / 2 f_{s}\), where \(f_{s} \approx 1 / T\). This may be achieved to an acceptable accuracy by lowpass filtering the analogue signal before
sampling. Failure to do this will result in requency components above the Nyquist requency being folded back into the range below \(1 / 2 f_{s}\), causing a form of distortion Further distorti
Further distortion is introduced by the finite wordlength or number of bits; the true voltage must be truncated or rounded to one of the discrete levels which correspond to a permissible binary number. The
noise introduced by this quantization error may be reduced to acceptable levels by a judicious choice of wordlength and
sampling rate.
Thiscrete-time signal produced by sampling an analogue signal is defined to corresponding to a sampling point at time \(t=n T\) for \(-\infty<n<\infty\). Such a sequence is ways referred to by its value at \(t=n T\). Thus the sequence \(\{x(n)\}\) is defined a
\(\{\ldots x(-2), x(-1), x(0), x(1), x(2), \ldots\}\)
with element \(x(n)\) occuring at \(t=n T\). By his definition, \(\{x(n-k)\}\) denotes the sequence whose value at \(\{=n T\), is \(x(n-k)\). Hence \(k>0,\{x(n-k)\}\) is a delayed vershifted \(k\) places to the right element is delayed by \(k\) sampling intervals. It is often assumed, and arranged in practice, that elements of a discrete-time signal are zero case. A discrete-time signal beco be the digital signal when its elements are represented by fixed-wordlength binary numbers. Not all signals encountered in he study of digital filters originate as analogue signals. Many digital signals, such as
the discrete time impulse \(\{\delta(n)\}\) illusrated, are readily generated in digital form but would be unlikely to occur in that precise form as sampled analogue signals. Further, a perfectly rectangular digital version of a bandlimited analogue square wave.
Conversion from a digital to an analogue signal involves reconstituting the sampled 52

\section*{by B. M. G. Cheetham and P. Hughes*}

\section*{The importance of digital filters a} evices for processing digitized sig introduction of special-purpos microprocessors and integrated circuits specifically designed for signa processing. Using the numerical processing power of such circuits,
digital filters are able to perform perations corresponding to those of analogue filters. For example, the In el 2920 analogue signal processor with its analogue/digital converters cts as a one-chip replacement for a In addition t
ing the frequency responses of estab ished forms of analogue filters, digifilters have a wide range of other he much greater power and flexibility of numerical processing as compared with analogue methods, and the filter may not easily be described as having particular type of frequency response. Digital filter inputs need not umerically generated signals are encountered in many applications. In developing the basic theory of digital filters, therefore, it is best to consider hem as general devices for processing
sequencies of numerical data rather han as digital realisations of analogue filters. But before doing this, this artile briefly considers the sampling解 representing such signals
voltage levels as electrical pulses at the samping instants, and low-pass filtering to uist limit. In practice, the sampling rate mployed for analogue to digital converion is normally considerably greater than ensure that the analogue low-pass filters required may be relatively simple and nexpensive.
A digital signal may be subjected to umerical operations such as addition, subtraction and multiplication by passing the sequence of numbers (referred to as
samples) through some form of digital MP.M. Hughes B. Eng. and B. M. G. Cheecham
P.D.,.,...I.E. are lecturers at the University
of Liverpool.
processing system. Such a system could be a program implemented on a main-frame scientific research computer normally used to process blocks of stored digital
signal samples for analysis sore signal samples for analysis some time later.
Alternatively, the system may be a piece of special-purpose hardware consisting of some digital integrated circuits and/or microprocessor. With such a dedicated hardware system the processing may be carried out in real time so that an outpu
signal is generated as an uninterrupted stream of samples with at most a small fixed delay between each input sample and its corresponding output sample. In this case the digital system, with associated direct replacement for an analogue system such as a filter or a modulator.
Digital processing systems can be de signed to carry out a very wide range of operations on digital signals. A digital
filter is a processing system which gener ates the output sequence \(\{y(n)\}\) from an input sequence \(\{x(n)\}\)
\[
y(n)=\sum_{i=0}^{M} a_{i} x(n-i)-\sum_{j=1}^{N} b_{i} y(n-j)
\]
at time \(n T\) for \(-\infty<n<\infty\). This is a difat time \(n T\) for \(-\infty<n<\infty\). This is a dif-
ference equation of order \(M\) or \(N\), whichever is the larger. When \(N>0\) the filter is said to be recursive as previous output samples are used in the calculation \(a_{0}, a_{1}, \ldots a_{\mathrm{M}}\) and \(b_{1}, b_{2}, \ldots b_{\mathrm{N}}\) are fixed (time invariant) multiplication constants which characterize the effect of the filter. The design of a useful digital filter requires the selection of these constants using deadopted for calculating component values in analogue filters, and an example for a class of digital filters is given in a subsequent article. As a simple example, conrder difference equation
\[
y(n)=x(n)+b y(n-1)
\]
where \(b\) is a constant. This filter is shown in diagrammatic form in Fig. 1, illustrat-


Flg. 1. First-order digital filter applies signal \(x(n)\) to produce an output \(y(n)\).. ignai \(x\) (n) to produce an output \(y(n)\).


Fig. 2. The discrete-time impulse o (n) is \(\delta(n)=\left\{\begin{array}{l}0, t=n T, n \neq 0 .\} \\ 1, t=0\end{array}\right.\)
ing the three basic operations required for any digital filter: addition, multiplication by constants and delay. Make the input sequence \(\{x(n)\}\) equal to the discrete-time
impulse sequence \(\{\delta(n)\}\) of Fig. 2, with
\[
\delta(n)= \begin{cases}1, n=0 \\ 0, & n \neq 0\end{cases}
\]

The output from this simple filter may be calculated by hand. Assuming \(y(-1)\) to b zero, then
\[
y(0)=x(0)+b y(-1)=1
\]

Following on from this
\[
\begin{aligned}
& y(1)=x(1)+b y(0)=b \\
& y(2)=x(2)+b y(1)=b^{2}
\end{aligned}
\]
\(b^{2}\), and so on.
Hence the output will be the real exponen tial sequence:
\(\{y(n)\}=\left\{\ldots, 0, b, b^{2}\right.\),
., \(\left.b^{r}, \ldots\right\}(3)\)
illustrated below in Fig. 3 for \(b=0.7\). If \(|b|>1\), the sequence \(\{y(n\}\) would increase without limit and the digital filter filter is one which produces a bounded elements do not increase without limit as \(n\) increases or decreases (looking backward in time) for any bounded input sequence. As the input signal in the example above is the discrete-time impulse \(\{\delta(n)\}\) the out-
put obtained is termed the impulse resput obtained is termed the impulse res
ponse of the filter. If the input had been \(\{\delta(n-k)\}\), a delayed version of the discrete-time impulse, the output would have been \(\{y(n-k)\}\) a similarly delayed version of \(\{y(n)\}\)
eral filter, as given by response of a gen eral fiter, as
the sequence \(\{h(n)\}\), consider its response to an arbitrary input sequence \(\{x(n)\}\). Such a sequence may bed weighted sum of delayed unit impu
\[
\{x(n)\}=\left\{\sum_{k=-\infty}^{\infty} x(k) \cdot \delta(n-k)\right\}
\]

If only bounded input and output sequences are allowed, it may be shown that the digital filter defined by equation 1 is linear in the sense that in input sequence \(\left\{x_{1}(n)\right\}\) and \(\left\{x_{2}(n\}\right.\) produce output ponse to \(\left\{\lambda x_{1}(n)+\mu x_{2}(n\}\right.\) will be \(\left\{\lambda y_{1}(n)\right.\) \(\left.+\mu y_{2}(n)\right\}\) for any values of \(\lambda\) and \(\mu\). \(\mathbf{B}\) extending this property to the infinite sum of scaled impulses as given by (4) one de duces that the response to \(\{x(n)\}\) is WIRELESS WORLD MAY 1982


The right hand side is the convolution of \(\{x(n)\}\) with \(\{h(n)\}\), often denoted by variable it may be shown that an entirely equivalent expression is
\[
\begin{aligned}
& \{y(n)\}=\{h(n)\} \approx\{x(n)\} \\
& =\left\{\sum_{k=-\infty}^{\infty} h(k) x(n-k)\right\}
\end{aligned}
\]

\section*{\(y(n)=1 / 2 A\left(H\left(\mathrm{e}^{j \omega}\right) \mathrm{e}^{j \omega n}+H\left(\mathrm{e}^{-j \omega}\right) \mathrm{e}^{-j \omega n}\right)\)}

Denoting by \(\phi(\omega)\) the argument of \(H\left(\mathrm{e}^{\omega}\right)\) and noting that since all values of \(h(k)\) in equation 3 are real,,\(H\left({ }^{j}\left(\mathrm{j}^{\omega}\right)|=| H\left(\mathrm{e}^{2}\right.\right.\)
the argument of \(H\left(\mathrm{e}^{-j \omega}\right)=-\phi(\omega)\)
\[
y(n)=1 / 2 A\left|H\left(\mathrm{e}^{j \omega}\right)\right| x
\]

The impulse response of a filter therefore provides a complete characterization of its
behaviour, allowing the response to any input sequence to be deduced from these two equations.
Alternative characterization An alternative method of characterizing a digital filter is to specify its effect on sinu-
soidal input signals soidal input signals over a range of frequencies. A fundamental property of fixed response to a sinusoidal input is a sinuspidal output of identical frequency but modified amplitude and phase. Define a sinusoidal sequence of radian frequency \(\omega\) to be the sampled version of a sinusoidal function of time, with frequency \(F=\omega / 2 \pi T\); for example \(\{A \cos (\omega n)\}\).
The response of a filter with impulse response \(\{h(n)\}\) to this sequence as input may be readily calculated by first considering the theoretical response to the com-plex-valued exponential sequence \(\left\{\mathrm{e}_{\mathrm{i} \text { in }}\right\}\), sequence:

where \(H\left(\mathrm{e}^{j \omega}\right)=\sum_{k=-\infty}^{\infty} h(k) \mathrm{e}^{-\mathrm{j} \omega}\)

The function \(H\left(\mathrm{e}_{\mathrm{j}}\right)\) is defined as the frequency response of the digital filter and is a complex number for any value of \(\omega\) (subject to the convergence of the series in
equation 5; by the definition of stability
 Fig. 3. Output sequence obtained by feed
ing \(\delta\) (n) in fig. 2 into the digital filter shown in Fig. 1 with \(b=0.7\) is the real exponential
sequence \(v(n)=0.7^{n}\) for \(n>0\).
\(=A\left|H\left(e^{j \omega}\right)\right| \cos (\omega n+\phi(\omega))\)
Hence the modulus and argument of the complex-valued frequency response \(H\) (e \({ }^{\text {give }}\) ) give the gain and phase shift of the filter radian frequency \(\omega\). Bearing in mind that
\[
\int_{-\pi}^{\pi} \mathrm{e}^{j \omega(n-k)} \mathrm{d} \omega= \begin{cases}2 \pi & \text { if } n=k \\ 0 & \text { if } n \neq k\end{cases}
\]
it may be deduced from equation 3 that
\(\qquad\)
The transformation from the sequence \(\{h(n)\}\) to the complex function \(H\left(e^{j \omega}\right)\) of
\(\omega\) defined by equation 5 is a Fourier transform; the reverse process given by equation 6 is an inverse Fourier transform. As an illustration of frequency response, consider again the simple digital filter defined by equation 2 . By equations \(3 \& 5\)
\[
H\left(\mathrm{e}^{j \omega}\right)=\sum_{k=0}^{\infty} b^{k} \mathrm{e}^{-j \omega k}
\]
which may be summed for \(|b|<1\) as a geo metric series, giving
\[
\begin{equation*}
H\left(\mathrm{e}^{j \omega}\right)=\left(1-b e^{-j \omega}\right)^{-1} \tag{7}
\end{equation*}
\]

Evaluating this expression for \(b=0.7\) gives \(\left|H\left(\mathrm{e}^{j \omega}\right)\right|=(1.49-1.4 \cos \omega)^{-1 / 2}\)
\[
\text { and } \phi(\omega)=\tan ^{-1}\left(\frac{0.7 \sin \omega}{0.7 \cos \omega-1}\right)
\]

Frequency response graphs of gain, \(H\left(e^{\omega}\right)\), and phase \(\phi(\omega)\) over radian fre quencies 0 to \(\pi\), corresponding to analogue
frequencies from zero to the Nyquist, are shown in Fig. 4(a) and (b).
z-transform
Analysis and design of digital filters is greatly simplified by the use of the \(z\) transform which is analogous to the


Fig. 4. Frequency response of a digital
filter (in this case Fig. 1 with \(b=0.7\) ) char terizes its response to sampled sinusoidal inputs of the form Acoswn. Amplitude response at top, phase response bottom.

The \(z\)-transform of the sequence \(\{x(n)\}\) is defined as the infinite sum
\[
X(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n}
\]
or a complex variable \(z\). Notice the similarity between this expression and equation 3 ; setting \(z=\mathrm{e}^{\mathrm{j} \omega}\) gives \(X(z)\) as the
Fourier transform of \(\{x(n)\}\). Fourier transform of \(\{x(n)\}\). The \(z\) is \(H(z)\) and hence the setting of \(z=\mathrm{e}^{(i \omega}\) in his case gives the frequency response already defined as \(H\) (e \(\left.{ }^{j \omega}\right)\). The equation above may therefore be thought of as a Aeneraization of the Fourier transform. ence \(\{x(n-1)\}\) is \(z^{-1} X(z)\) as each coefficient of \(z^{-n}\) is shifted along by one place. In general the \(z\)-transform of \(\{x(n-k)\}\) is \({ }^{-k} X(z)\). Aso notice that the \(z\)-transform f the impulse \(\{\delta(n)\}\) is \(\Delta(z)=\)
a digital filter as defined by equation gives
\(Y(z)=\sum_{i=0}^{M} a_{i} z^{-i} X(z)-\sum_{j=1}^{N} b_{j} z^{-j} Y(z)\)
which may be rearranged and expressed in he form
\[
Y(z)=\left[\left(\sum_{i=0}^{M} a_{i} z^{-i}\right) /\left(1+\sum_{j=1}^{N} b_{j} z^{-j}\right)\right] X(z)
\]

The expression in square brackets above is equal to \(H(z)\) as if the input sequence
\(\{x(n)\}=\{\delta(n)\}\) then \(Y(z)\) becomes equa to the \(z\)-transform of the impulse response. Hence \(H(z)\) may be expressed directly in the frequency rupier coefficients, and directly from this expression by setting \(z=\mathrm{e}^{i \omega}\). This may be verified for the simple filter defined by equation 2 wher \(H(z)=1 /\left(1-b z^{-1}\right)\) and hence an expres sion for \(H\left(e^{j \omega}\right)\) identical to equation 7 . The transfer function of a filter, \(H(z)\),
has now been expressed as the ratio of two has now been expressed as the ratio of two
polynomial expressions in \(z^{-1}\), the roots of which are the poles and zeros of \(H(z)\). Hence
\[
H(z)=a_{0} \int_{i=1}^{M}\left(1-z_{i} z^{-1}\right) \int_{j=1}^{N}\left(1-p_{j} z^{-1}\right)(8)
\]
assuming \(a_{0}=0\), where the poles are \(p_{i}\) and the zeros by \(z_{i}\). Expanding by partial frac tions (assuming there are no repeated roots other than at \(z=0\),
\[
H(z)=\sum_{i=0}^{M-N} B_{i} z^{-1}+\sum_{j=1}^{N} A_{j} /\left(1-p_{j} z^{-1}\right)
\]
which expresses \(H(z)\) as the weighted sum of sequences whose \(z\)-transforms are \(z^{-1}\) and \(1 /\left(1-p_{;} z^{-1}\right)\). Clearly \(z^{-1}\) corresponds to a delayed impulse \(\{\delta(n-i)\}\). By refering back to the example of a first-order \(1 /\left(1-b z^{-1}\right)\) it may be deduced that \(1 /\left(1-p_{j} z^{-1}\right)\) is the \(z\)-transform of an expoential sequence of the form
\(\left\{\ldots 0, \ldots 0,1, p_{\mathrm{j}}, p_{\mathrm{i}}^{2}, \ldots p_{\mathrm{i}}^{r}, \ldots\right\}\)
The roots of a polynomial may of course be complex numbers and therefore the sequences above may be complex. As complex roots occur in conjugate pairs, the sequ-
ence obtained for \(\{h(n)\}\) is always real. A non-recursive filter, i.e. one with \(N=0\), will have an impulse response with \(h(n)=B_{\mathrm{n}}\) for \(0 \leqslant n \leqslant M\) and zero otherwise. Such an impulse response is termed finite
as only a finite number of elements are


Fig. 5. Argand diagram shows pole and which determines the frequency respig. 1 which determines the frequency response
non-zero. The impulse response of a recur sive filter ( \(N>0\) ) will include at least on
sequence of the form in therefore be of infinite equation 9 and ca a filter to be stable, the above sequence corresponding to each of its \(N\) poles must be a decaying exponential. Hence stable filter must have \(\left|p_{j}\right|<1\) for all
its poles.
Considerable insight into the behaviou of digital fileters may be gained by plottions of poles and zeros as values \(z\). Such a diagram is shown in Fig. 5 for the transfer function \(H(z)=1 /\left(1-0.7 z^{-1}\right)\) which has pole at \(z=0.7\), and a zero at \(z=0\). The points for which \(z=\mathrm{e}^{i \omega}\) on this plane corre-
spond to the unit circle with centre \(z=0\) and radius 1 . The frequency response \(H\left(e^{j \omega}\right)\) is obtained by an evaluation of \(H(z)\) for values of \(z\) on this unit circle, where \(\omega\) is the angle subtended from the real axis to the point corresponding to \(z=\mathrm{e}^{j \omega}\). Freopposite sides of the unit circle on the real opposis.
axis.
A stable filter will have all its poles in side the unit circle \(\left(\left|p_{i}\right|<1\right)\). From
equation 8 the value of \(\left|H\left(j^{j}\right)\right|\) at equation 8 the value of \(H\left(e^{j o)}\right.\) at
any point on the unit circle is equal to \(a_{0}\) multiplied by the product of the distances from that point to each of the zeros, divided by the product of distances to the poles. The phase of \(H(z)\) may also be readily calculated. Consequently zeros close to for which \(\left|H\left(\mathrm{e}^{i \omega}\right)\right|\) is close to zero. Poles close to the unit circle produce large values of \(\left|H\left(\mathrm{e}^{i \omega}\right)\right|\), the closer the pole, the larger the modulus. Such poles can also affect \(\phi(\omega)\) resulting in severe The design of digital filters with specified frequency responses is often carried out by locating zeros and poles at appropriate points on the \(z\)-plane. Design non-recursive filters: refer for details to any of the standard references, some of which are listed below. Non-recursive filters have certain advantages of guaranteed stability and easily specifiable phase charnumber of arithmetical operations which could make them more difficult to implement. Recursive filters are perhaps still
more commonly used, and therefore the more commonly used, and therefore the
next article will introduce a design procedure for this class of filters.
continued

\section*{Further reading}

Digital Signal Processing, by A. V. Oppenheim and R. W. Schafer, Prentice-Hall, 1975. Theory and Application of Digital Signal
Processing, by L. R. Rabiner and B. Gold, Prentice-Hall, 1975.
Digital and Kalman Fiitering, by S. M. Bosic,
Edward Arnold, London 1979 Inroduction to Digital Filters, by T I Terrel Introduction to Digi
Macmill an, 1980. Digital Signal Processing Thoery Design and mplementation,


What brings home the world's best broadcasting system at the touch of a button?

\section*{Simple.}

\section*{The QUADFM4}

Simply write or phone for more information to
The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs. PE18 7DB. Telephone: (0480) 52561.

\title{
QUAD* \\ to the original sound
}
wW - 052 FOR FURTHER DETAILS

\section*{EP4000}

Programs 2704/2708/2716(3)/2508/2758 2516/2716/2532/273
Ł Emulates same devices with a single keypress
\(\star 300\) ns access time in emulation mode
\(\star\) Editing facilities - data entry, match, display,
routa
Input/output as standard - RS232 (ASC11-hex),
20mA, printer, cassette \& DMA
\(\star\) Expandable with 2764 adaptor \& Bipolar Prom
module
\(\star\) Fully buffered cold ZIF sock
\(\star\) Price \(£ 545\) + VAT + £12 delivery

\section*{P4000 Proouction}
\(\star\) Program 1-8 devices simultaneously \(\star\) Programs same devices as EP4000
\(\star\) No personality cards needed - Simple operation
\(\star\) Blank check \& verify functions
\(\star\) Powered down master \& copy sockets
\(\star\) Individual socket LED indicators
\(\star\) Mode indicators for blank check, program
\(\star\) verify, and socket power down
\(\star\) Price \(£ 545\) + VAT + \(£ 12\) delivery


\section*{MODEL \(14 \underset{\substack{\text { ERROM } \\ \text { ERASERS }}}{\substack{\text { R } \\ \text { M }}}\)}
+ 14 EPROM capacity
\(\star\) Safety interlocked
\(\star\) Convenient tray loading of devices
\(\star\) UV141 (with timer) £78 + VAT
\(\star\) UV 140 £61.50 + VAT

\section*{WE HAVE MOVED}

GP Industrial Electronics Ltd.
Unit E, Huxley Close
Newnham Industrial Estate
Plymouth PL7 4JN
Tel: Plymouth (0752) 332961

\section*{A CHARTER FOR} ISOLATION
I wish to quote from your editorial "A Charter Tor solation" in the December issue:
"It teaves us, says Hartle of the engineer as no more than a high-grade echnician, a functionary not fully professional
This conforms to a view held in this country na previous age - \(1920-50\). But in surpisises me that you did not correlate the holding of shis
view with the photo on page 37 of that issue, where "engineers practice climbing on these short poles". By our definitions, if British engi-
heers sill spend time climbing poles then we neers still spend time climbing poles.
would have to say they are technicians.
The engineering profession down-braded itself for too long be accepping such jobss, even in starting salaries of US \(\$ 22,000\) or thereabouts?

Michigan Satane Universinty,

\section*{THE DEATH OF}

ELECTRIC CURRENT
Ivor Cart's leterer in the February issue only
serves to illustrate the defficiences in his knowledge of mathematics and conventional \(E M\) theory and the confusion of his own theory.
Can he no see that \(E I H=\sqrt{W E}\) is wrong and
 There is is inded a a man mathename chat reasons?
dees not describe correctly ne true physiter
and does not describe correctly the true physics of
magneism but at least it is dimensionaly magnets.
sound.
His difficulty with step waveforms on transmission lines becomes clearer. Of course the
conduction and displacement currents are both present in the line together, but only as the wave advances. The displacement current \(d D / D / T\) is associated with the wave front only ( \(D\) is con-
stant elsewhere). If the wave reaches a (correct) stant elsewhere). If the wave reaches a (correct)
resistive temination \(d D / d T\) ceases, the step is terminated and the resistor begins to absorb the energy in the wave. It is precisely because the
displacement current flows across the transmisdisplacement current flows across the transmis-
sion line that the wave is called a transverse EM wave and the displacement current is distinct from the conduction current. The energy asso-
ciated with the displacement current is stored and can be recovered later (cf. raurrant pulse generators). It can be seen from Mr Cattr's own illustration (Fig. 3, p. 68 March, 1979) that the
vector ( \(\mathrm{d} B / \mathrm{d} T\) ) and the displacement current vector (dD/dT) are at right angles, therefore
\(E \times H\) is purely reactive. This is analogous with \(E \times H\) is purely reactive. This is analogous with reactive power \(\left(V A_{\mathrm{r}}\right)\), where current and voltage
are \(90^{\circ}\) out of phase. The \(H\) vector associated with the conduction current is also at \(90^{\circ}\) to the \(E\) field and again no energy is dissipated; the
power flow is in the direction of the conduction current. In a third case, the transmission line is resistive and there is a component of the \(E\) field along the line in a direction opposite to the pated.
pated. Catt is further confused with regard to
Mr
electric charge. The existence of electric charge electric charge. The existence of electric charge
is not a theory; it is a fact like the sun and coal in is not a theory; it is a fact like the sun and coal in
South Wales. Since one of the manifestations of electric charge is electric potential, any theory of electric waves that dispenses with electric
charge must be rubbish. It is the objective of WIRELESS WORLD MAY 1982

EM theory to explain the various manifestations
electric charge
Mr Catt's mathematics is wrong; he does not
understand the application of vectors to waves and he does not distinguish fact from
I'm sorry if he believes his version of Maxwell
In correct; it isn't. If he was right in his belie some changes would indeed be needed and Dermod O'Reilly,
Antwerp,
Belgium.
RECHARGING DRY CELLS
With reference to the letter from Mr D. F. Wiudreyerence to the letter from Mr D. F.
Caugust 1981) I should like to offer my findings on the subject, and also beg more information from the author.
I have been using the same four SP2 cells for about 11 weeks, five days a week, approximately 1 hour per day. At first I would recharge
hem (using the circuit and method due to Mr them (using the circuit and method due to Mr
Caudrey) for an hour or two, twice a week but now I need to re-charge every day for about \(2-3\) hours to get an hour's use from the cells. Al-
though I at convinced that the method is feasthough I am convinced that the method is feas-
ble in practice, I do not seem to have had the same success as Mr Caudrey, and so I would like to hear from Mr Caudrey his recommendations bout charging, i.e. when and for how long. S.P. Nar
Idle,
Bredford

MILLIMETRE-WAVE LENS AERIALS have read Dr K. L. Smith's article on millinostalgia as I was in the lens business in the early 1950 s ) and congratulate him on an excellent reintroduction to an almost forgoten topic. Has it occurred to Dr mith that his method another of Winston Koch's inventions, the serpentine lens? This form of lens can be assem-
bled from a set of plates which have been bled from a set of plates which have been
crimped into sinusoids. Propagation is in the Crimped into sinusoids. Propagation is in the simply the ratio between the widths of crimped
and uncrimped sheets. Dr Smith has only to and uncrimped sheets. Dr Smith has only to stack a set of crimped sheets and maching.
profile to produce a set of path-length lenses. The serpentine elens has two advantages. over
the \(\mathrm{H}_{01}\) wave-guide lens. It is undfected by the spacing between plates, so tolerances are easier,
spater spacing between plates, so tolerances are easier,
and by arranging for the surfaces of the sinusoiand by arranging for the surfaces of the sinusoi-
dal sheets to be normal to the phase surface of
the lens where they meet this surface, the lensthe lens where they meet this surface, the lensmede alternating \(\lambda / \lambda\) and and \(N / 2\) rransformersers which
degrade the side-lobe performance of a degrade the side-lobe performance of a wave-
guide lens in which the refractive index has been pushed too far from unity.
The path-length lens may have disadvantages as well, but since to the best of my knowledge
one has never been produced for operational use, perhaps Dr Smith will identify them by investigating the first thirteen models?
S. . D. Jones S. S. D. Jones Worcestershire

The author replies:
was pleased to hear that Mr Jones enjoyed the very interesting point regarding the development of the serpentine plate lens aerial, which he is right in ascribing to Winston Koch. agree on the added advantages of the corru-
gated conductor planes, but I did not consider employing them in the lens I made. Mr Jones raises a very interesting possibility, as I also
agree with him that there would not be any fundamental problem in turning out such modfified lenses by the same method I originated.
It would be most interesting to see an attem It would be most interesting to see an attempt
made practically on such a design. We should made practically on such a desig.
hank Mr Jones for the suggestion

LINEAR POWER
AMPLIFIER
Operation of the output transistors at an apperoximately constant low voltatage, at an recom-
mended by D. Rawson-Harris (Letter, Jan. 982, p.40), can be used to give a class-A amplifier which retains to a considerable extent the The lo a class-B amplifier.
lass A from a lowe transistors are operated in \(0,-2\) as suggested by Mr Rawson-Harris, and this supply is carried up and down by a slave class-B amplifier of gain +1 . The class-B amplifier may produce tion but as the effect of the distortion (or error) is only a small modulation of the almost constant c-e voltage of the class-A transistors its effect on the performance of the complete am-
plifier may be expected to be very small. An plifier may be expected to be very small. An
outline of the system is shown in the diagram. As a piece of engineering the system cannot
be rated very highly: Peter Walker's Ouad ambe rated very highly: Peter Walker's Qued amplifiers are much simpler, and their distortion is
so low that they sound like a piece of wire. But the economics of producing an amplifier may be different for the amateur constructor and expeimenter, and this alternative class-AB system
may therefore be of interest. It has been used in some expensive Japanese amplifiers, but may be new to many Wireless World readers.


Mr Rawson-Harris calls his triples curre mplifiers. Certainly their current gain is high but it is poorly defined, having at least the current-gain spread of their first transistors, and hey have high inler resistance. I feel that circuit and present a low resistance. To me the in of many hundreds as a common-emitrer mplifier, or enhanced emitter followers giving voltage gain \(\rightarrow 1\) very closely
E. F. Good

Neasham
Co. Durham

CLANDESTINE RADIO
Pat Hawker's review in the January and Feb to technical people which is noticeably omittes n the many books dealing with Resistance an thelligence activity in World War II. In rors appear and among many statements of fac one finds items which are the opinions or deduc tions of a particular source. Some correction
which I am qualified to make, will, I hope, contribute to a valuable summary.
SOE began to dosign and make radio equip ment before mid-1942, particularly the Type A
Mkl and the B Mkl in 1941. The "early French Resistance suitcase set" illustrated in p. 82 of the February issue was indeed the Type A MkII,
which I designed in late 1941, just after the which I designed in late 1941, just after the
completion of the B MkI. This set was produced completion of the B MkI. This set was produceg
by Marconi, first at Writtle then at Hackbridge in quantity believed well over 1000. Many were allocated to Russia as well as to France and
other areas of Occupied Europe, but details of distribution and usage are not available so far The modular form of the A MkII, like that of the later B MkII, was to assist in assembly onto
various housings, transport and concealment, as well as service by substitution.
Operational demand for a one-piece unit of
the smallest size led to the reengineering the smallest size led to the re-engineering of the tion engineers. The main difference in the design was in the replacement of the TT11 Tx
valve by the \(7 C 5\), which had then become availvalve by the \(C S\), which had then become avail-
able. Volume production from about the end o 1944 onwards totalled, I believer, over 4000 .
The " \(A\) " series was designed for short to The "A" series was designed for short to medium-range communication particularly to
UK from France, Belgium, Holland, Denmark and Norway. While the "3" series was intended
for medium to long range in Balkan, Middle for medium to long range in Balkan, Middle
East and African countries as well as from Southern France. A "C" series was considered but not developed, but a B MkIII was produced
especially for the Far East and long-range jungle patrols. The transmitter was c.w. and a.m.m.r.t., and like the receiver, was hermetically sealed, positively buyoyant, and entirely powered by a
pedal-generator. The station was pedal-generator. The station was in two man
packs. The tendency of technical contract titles led to the general use of "A2",
"B " BII " etc., but the term " B 2 minor" is a SOE development was not centred on Gorhambury at St. Albans, which was only one of many large country houses used, but at the was entirely by the ISRB (ie. SOE) factory at Stonebridge Park, employing mainly Services
personnel: RAF, Royal Signals, REME, ATS
and FANY. About 7000 sets were made, with I will not contest the relative merits of SIS OE/Polish sets since I am as biased to one Pat Hawker is to another, following our respe vould wartime to employment and loyalties, but irements differed. The SOE sets were essen ally para-military, with far wider applicatio taan to agent use in Northern France, and for greater variety of operators. Too little has bee
said of the Polish sets and the Polish on, for which I have the greatest admiratio the for which I have the greatest admiration.
The OSS started development of suitcase sets
fom about mid-1942 learned rapidl from rom about mid-1942, learned rapidly, from British and their own experience, and ma historian tends to present the story as seen hrough the records and reports of his countrymen, and frequently dates are omitted, som plies their precedence. Reading G3VA's account of air-t-o-pround links (February, p.83) he
quotes first MI-6 une of "early American f.m. quipment on 30 MHz " then "SOE develope he 450 MHz S-Phone" and gives one date August 1944. I have no information of the use he American R/T sets before 1944, about the phone was working in 1941, and my colleague, Charles Bovill tested the first airborne equip ment on a flight in Wellington No. L7772
October 6th 1941. The air-set was a prototyp superhet tuning through 60-70cm. It was use in Operation "Claude" on October 28th in
Whitley Mk.V. The S-Phone ground-set was developed by Capt. Bert Lane and the airset by Maior Hobday, both of Royal Signals. The air was destroyed in a crash later in 1941, b replaced by a super-regenerative air-set ten day
later, by a rapid development by F/Lt Bovill
This reane his remained standard operational equipmen by 138 and 161 Squadrons until the productio anuary 1944, a USAF Liberator was fitted with Homing S-phone gear, and in summer of that ear F/Lt Bovill equipped and flew with thirt Carrier Sqdins, at Brindisi. These aircraft use S -phone continuously in operations until the
end of the war, mainly over Albania, Yutoslavia and N. Italy. This is only a small part of the S phone story, appropriate now in context with John I. Brown, G3EUR
(late Major R. Signals,

\section*{THE NEW}

\section*{ELECTRONICS}

I am afraid that my own experiences with in terviewees is closely similar to that described by
Mr Jaques in the January 1982 issue. I could hear an echo of my own
iences as I read it through
I like to finish an interview with a few simple technical questions, not to cause the interviewee
any difficulty but to ensure any difficulty but to ensure that his understanding of the fundamentals of the subject is
dequate. In the situation, slick, polished extbook answers are not expected but the right
epproach to achieving a satisfactory approach to achieving a satisfactoryer answer is
expected. At this stage of the interview the inexpected. At this stage of the interview the in-
terviewees are likely to be reasonably relaxed, and frequently have done a good job on selling
themselves, so that the situation for both parties
ooks good.
My openi
My opening question starts with a battery in series. Assuming the capacitior is discharged at time zero, tell me how the capacitor voltage varies with time? All too frequently we do not get on to the second part (adding a series induc-
tor) or the third part (replacing the battery with a sine-wave generator). Perhaps the interview situation is too upsetring, I try to provide not too serious help and guidance. Nevertheless one
hopeful believed that the linear network with a inusoidal input produced squarewaves. It is sery difficult explaining to the MD that,
in spite of the excellent paper qualifictions of those already interviewed, further interviewing will be necessary.
N. A. Haran
will be necessar
N. A. Haran,
St. Albans,
St. Albans
Herts.

\section*{INTENTIONAL LOGIC \\ SYMBOLS}

In reply to Christopher Hudson (Letters, Feb
ruary 1982 ) the question as to whether gate is performing the function of positive NAND or negative NOR is to me as daft as
asking whether a bucket is half fall or empty. The answer is both, not merely because the truth table says so but because, as an experienced logic designer I can, and do to think of it as
either with complete dexterity, although more either with complete dexterity, although more
frequennty I think of a gate in terms of its truth table. If then I, as the designer of a circuit, one?
Logic 1 and 0 are two states of complete equality: one is not merely the absence of the example, may be responsive to ane state for example, may be responsive to one state rather not of the signal feeding it. Mr Hudson does not


WIRELESS WORLD MAY 1982

define what he means by the assertive state, I can only assume that he means the state which in the case of flip-flo 'clear' inputs, one could have an active-high and an active-low flip-flop connected to the same signal. How can the signal itself be thought of as having an assertive
state? Mr Hudson illustrates the point himself in the mess he gets into over his Fig. 2. Essentially a 1 or 0 on the select are equally assertive represents the general case.
In a practical design what may start out in the
draft design as Fig. 1(a) may finish up as Fig. (b). The question is, is the two-input NOR performing the function of low-assertive
NAND or high-assertive NOR? If Fig. 1(a) represents the intention then it is performing both. Should we draw it twice? Well why not,
we are already being asked to show the outputs we are aready bing asked to show te outpuss symbols as before, accept that identical devices nay have different symbols, that a connection in between and even to accept that an inherently symmetrical device like a two gate latch should be assera, November 1980) all inthe name of sim-
Col
plification.
The AND and OR names are a useful aid to nemory as to the rum table of the gates so of NANDS and NORs spoils the essential simplicity of the concept to the point where the
names may be more of a hindrance. Intentional logic symbols are an attempt to restore the original simplicity. \(M r\) Hudson's letter is in \(m y\)
opinion ample proof that they have failed miseropinion ample proof that they have failed miser-
bbly to do so. My proposed logic symbols exploit the fact
hat if one is fored to live with negative and that if one is forced to live with negative and
positive logic, one does not need to also ilie with both AND and OR because we can redefine the OR as a negative AND. As we now have oney name, it is only necessary to define whether it is positive or negative logic, inverting or non-
inverting. This is most aasily achieved by putting the simplified AND truth within the
symbol, thus nothing need be committed to symbol, thus nothing need
memory: it speaks for itself.
By way of a field test I introduced my 10 year
old son to my logic symbols. Within half an old son to my logic symbols. Within half an
hour he could derive the waveforms out of any
 is necessary to define eight types of gate, with truth-table logic symbols, Fig. 2 gives a full
definition. Simplicity is the name of the game. J. E. Kennaugh, Callington,
Cornwall.
disagree with your correspondent, C . Hudson, WIRELESS WORLD MAY 1982

Whilst these may at first seem attractive from an academic viewpoint, in practice such cir-
cuitry can cause a good deal of confusion, particularly where multiple gate packages are in use. Consider for instance, a 7400 NAND gate
plit up in a circuit such that part is used split up in a circuit such that part is used
as NAND, part is used as low-active OR, and the remainder as inverters.
Under Mr Hudson's instructions, this Under Mr Hudson's instructions, this
results in three different drawings for the same device. A service technician wrying to relate the drawing to a particular chip pack would have ing. In addition, an increasing number of coming. In addition, an increasing number of com-
plex and low could be equally considered to be ac-
ive, since important but differing instructions tive, since important but differing instructions an input be drawn?
Even if the traditional method of drawing
diagrams is for some reason to be deplored I diagrams is for some reason to be deplored, I
consider that it should be retained on the basis consider that it should be retained on the basis
that it is at least an established standard. To change symbols every time someone has a new
idea is a recipe for annoving confusion. idea is a recipe for annoying confusion.
To sum up, I would say that I consider Mr Hudson's proposals a change for the sake of change - rather like using Hertz for the
perfectly acceptable \(c / s\), and changing the speling of enquiry to inquiry.
ling of enqu
L. Hayward
Wareham
.

\section*{Dorset}

\section*{TWINS PARADOX OF \\ RELATIVITY}

I refer to L. J. Higgins' letter (April 1981) in which I am accused of addressing myself to a "miraculous coincidence" The first is easily disposed of, since the accusation is quite false and originates in Mr Hig -
gins' failure to pay close attention to the text
 p.56., the first column of which cites Einstein's
own activities and his words to which the second paragraph of my letter (January 1981) alluded. Thus Mr Higgins accuses Einstein, not me, of contriving a fundamental flaw.
I come now to the matter of coincidence and Ill thame ensues. The equation \(F L / 1 / 2 v=m v\) shows how momentum is achieved. Unfortunately Newton did
not know that material particles are held separate by interatomic forces and that, in consequence, all force acts at a distance, but today
any competent radio engineer knows that the any competent radio engineer knows that the
1.h.s. of the above equation represents the cumulative Doppler modification to an impressed
force acting from a distance and having its force acting from a distance and having its
origin fixed to some arbitarily stationary datum, origin fixed to some arbitarily stationary datum,
motion and energy being of course related to that datum. So we have two methods of obtaining the KE nalogue with flassical which is based upon an which depends upon Doppler. Being a physical description, the latter represents the application
of negative feedback to ancient hypothesis, serving to convert that hypothesis into the form of unassailabele physical descripistion and farmowing
uirect comparison with modern experimental direct comparison with modern experimental
results. This is an addition to the scientific method.
Even though the two methods of obtaining the KE equation differ so widely, each not
the same result which in its turn accords with
experiment. The fact that the original derivation of the KE equation is in accord with experiment
and also with the phsical description is pure and also with the physical description is pure
coincidence, nothing more. coincidence, nothing more.
I come next to the experimental facts which lead to the falsification of both the concept of
variable time and the light postulate, thereby variable time and the light postulate, thereb putting an end to the twins controversy.
Februan referring to J. C. Maxwell (Letters,
 mass increases hypothesis has been verified by
experiment. He also inverts history by putting \(E\) experiment. He also inverts history by putting \(E\)
\(=M C^{2}\) before mass increase. In a linear particl accelerator the origin of the motive force is at
rest relative to the machine and since the force rest relaive to the machine and since the forc
acts at a distance its effect must be subiect to first-order Doppler. This is a physical fact which is never mentioned. If the force travelled
at infinite velocity then the experiment would at infinite velocity then the experiment would
yield the Newtonian energy equation as its result. However, in reality the force is known to
move at the lesser velocity \(C\) and hence the move at the lesser velocity \(C\) and hence the
declining effectiveness of the force with relative velocity is modified by a second-order term cond identical to the Lorent transifirtron beam and linear particle accelerator
Electron experiments prove quite conclusively that mas is velocity-invariant. If, as Mr D Dewe would have
us believe, mass increase can be derived from \(E\) us believe, mass increase can be derived from \(E\)
\(=M C^{\text {then }}\) then either the mathematic or the derivation or the equation itself is wrong. The
falsehood is proven by experiment valion or
falshood is proven by experiment.
Let Let us now
Mhese things.
Mass increase is justified by the consideration
of the elastic collision of two proiectiles. Within Mass increase is justified by the consideration
of the elastic collision of two proiecties. Within ity-variant rests solely upon the stationary observer 'knowing that the clock of the moving participant of the experiment runs slower'.
If, as has earlier been shown mass is velocity invariant then time is, inevitably, velocity-invariant as well.
riant as well.
In its turn the derivation showing time to be
velocity yariant rests entirely velocity variant rests enirely upon
tion that the light postulate is true.
Because time is in fact velocity. invariant there is no alternative but to accept that the light
postulate is false. The fact that
appear to confirm the end product of a flight of pure fancy is indeed a miraculous coincidence Should anyone question the fact that \(E=M C^{2}\)
is disproven, other than in the limited sense of mathematic equivalence, I would point out that
the matter has never been tested directly due to the matter has never been tested directly due to
insurmountable technical problems I suggest that Prof. H. Dingle's misgivings
about atomic experiments were entirely justified about atomic experiments were entirely justified
because it has been shown that matter has becuuse it has been shown that matter has
never, on this planet, been converted into never, on this planet, been converted into
energy. We are left with the distinct risk that
interconversion might interconversion might one day accidentally experience to predict the outcome.
A valid alternative has been provided to re-
place S.R.T. and it is to be hoped place S.R.T. and it it is oene hoved that the
scientists will emerge from behind their wall of icy silence and discuss the matter in terms which do not involve the double standards that thave been observed by I. Catt (Letters, Feb Alex Jones, Swanage, Swanage,
Dorset.
Reference J. Chappell. S.S.T. Vol. 2., No. 3, p.316-317.

\section*{LETIIERS}

AMATEUR LICENCES IN GERMANY
Just in case nobody else objects, may I correct
Licence Morse Amateur bands Class requirement
B 60 letters All amateur ban \begin{tabular}{l} 
most modes \\
including teleph \\
\hline
\end{tabular} including telephony
except \(1815-1832\)
and the new and the new
\(10,18,24 \mathrm{MHz}\) which are telegraphy
(A1A) only

A 30 letters \(\quad 3520-3700\) telegraphy telephony
ter telephony
\(21090-21150\)
telegrapy telegraphy
28.0-29.7 MHz also
telephony
v.h.f./u.h.f. only

C
H. Borsutzky,

Cologne,
W. Germany.

POWER TRANSISTOR FAILURE
I have some pulse-width-modulated switching I have some pulse-width-modulated switching
output power amplifiers which deliver up to
18 A at +170 V into a d.c. motor and inductor of output power amplifiers. which deliver up to
18 A at \(\pm 17 \mathrm{~V}\) into a d.c. motor and inductor of about 5 mH . The amplifiers have been unreliable over a long period, apparently random
power-transistor failures occurring even after several hundred hours of operation.
The output stage upes parallel pairs of
2N6547 transistors (others have been tried) 2N6547 transistors (others have been tried), supplies. Unmodulated switching rate is about kHz , rise and fall times are typically \(5 \mu \mathrm{~s}\), an the collectors are clamped at the total supply,
i.e. 340 V . During part of the cycle the collector i.e. 340 . During part of the cycle the collector-turn-off of the transistors.
Any light on the possible causes of failure will E. Shepherd
I. E. Shepherd
Hydraulics Research Station

Wallingford
Oxfordshire

ORIGINS OF THE HIGHPOWER TRANSMITTER
It is now 90 years since Nicola Tesla delighted
the eyes of engineers in Europe with demonst tions \({ }^{1}\) of high-frequency discharges in gases \(T\) obtain a voltage sufficiently hight, he used what we now recognise as a loose-coupled transfor-
mer with tuned primary and self-resonant mer with tuned primary and self-resonan
secondary, to step up the more modest level obtainable from a high-frequency alternator and
ower transformer. To the more critical eye seem a trifle over-complicated; but he also used a simpler arrangement with only one spark gap powered from a low-frequency generator. Read nsmitters, for example, that of Poldhu de gned by Fleming ca 1900, would undoubtedly beognise some antecedent features. It may no gested such an alternative application for hi
discharges: "I think that it may find practical discharges: "I think that it may find practica
applications in telegraphy. With such a brush it appicatons in telegraphy. With such a brush in
would be possible to send dispatches across the Atlantic (sic). "It is clear from the contextua of an ion or plasma beam than of any "etheric orce"; and his later patent \({ }^{2}\), though it includes hat is recognisably an antenna, confirms this. He was probably aware of the telegraph base on atmospheric conduction proposed by Loomi
and Ward \({ }^{\text {in the previous decade, which woul }}\) certainly have benefited from a transmitter o phenomenal power. Though Tesla here seem
to have had his head in the clouds, the practical ity of his transformer engineering shows that his eet were certainly well grounded. Hard on his heels we find another American (though Tesla was in fact Yugoslay), the engi cuit capable of providing the high a potential
needed for testing electrical apparatus. This circuit appears to correespond to the simpler one of Tesla, and actually uses an air-blast at the spark gap as suggested in Tesla's paper. As neither of these two engineers acknowledges the work f them invented what. Unless earlier contend ers appear, it is not unreasonable to allow them both to share the honours. Again, there is no
mention of etheric telegraphy in Thomson's paper, nor in his subsequent patent \({ }^{5}\). And this indifference to the communication potentialities
of his apparatus is the more surprising in that he of his apparatus is the more surprising in that he
had himself (it is alleged by Snyder experience of "Maxwell Electro-Magnetic Waves", and also had published \({ }^{7}\) a joint account of his work with Edwin Houston on "The
Alleged Etheric Force" demonstrated by Edison's experiments.
Wireless, therefore, waited for others to his "syntonized" tuning and the entrepreneuria Marconi with an aerial. And only then, as wire less took off, did companies in search of highe
spark power embody features of Tesla Thomson circuits in almost every transmitter of consequence. With the subsequent demise of spark telegraphy, these features eventually va
nished from wireless transmitters, though th blown spark-gap surfaced again in radar mod
ulators in WVorld ulators in World Ware II 18 , 9 and in later still in
plat
photographic flash-ear \({ }^{10}\) where then photographic flash-gear \({ }^{10}\). Where then can we up a "tickler" vacuum tester and you will find one; start up a xenon arc lamp and you will be
using another. "Tesla Lives" is my centennia using another. "Tesla
toast!
Desmond Thackeray
Music Department

\section*{References}
1. Your. I.E.E. 21, (1892), Lecture of 3 February by N. Tesla 20 March 1900
2. U.S. Patent 645,576 of 20 . 2. U.S. Patent 645,576 of 20 March 1900
3. (filed 2 Sept. 1897 )
E Sivowh 3. (1970), pp. 3 to 5

5. U.S. Patent 500,630 of 4 July 1893 (filed 18 6. Muly \({ }^{1892 \text { B. Snyder, General Elec. Rev. 23, }}\) . E. J. Houston \& E. Thomson, Jour 8. J. D. Craggs, M. E. Haine \&
J. Jour. I.E.E. 93, HIA, (1946), 963
. R. H. J. Brown \& J. A. Pop
Biol. Ilustr. 5, (1955),

\section*{HORN LOUDSPEAKER} DESIGN
Bernard Jones' thoughtul letter (January, 1982) prompted me to re-examine my 1974 articles on
horn loudspeaker design\({ }^{\star}\), and in particula horn loadspeaker design \({ }^{\star}\), and in particula
Fig. .13. The intention of this figure was to
illustrate how a treble horn could be illustrate how a treble horn could be eviven a degree of directivity in the horizontal plane b
modifying the standard circular cross section to modifying the standard circular cross section to
be rectangular, with aspect ratio \(2.5: 1\), but still ensuring that the area profile from throat to mouth followed a true exponential law (it could reasons for avoiding tractrices at high audio fequencies).
I have re-ch
I have re-checked my design calculations, and
must agree with Mr Jones that on strictly nust agree with Mr Jones that on strictly mazontal profile should fall inside the circcular horiprofile (in fact, the two sides of the rectangle should respectively be 1.12 and 2.8 times the ar design of horn with a circular throat to suit circular loudspeaker, and my imperfect attemp at "fairing" from circular to rectangular cross section has resulted in this anomaly. In practice can see that my artwork with damp plaster-0f aris probably made the profile even more ap
proximate at this point, but horns and ears arr emarkably tolerant, and I doubt whether an colorations thus produced are audible, or if auc
ble are at all obrusive. I can confirm Mr Jone
horns give disappointing results unless mounte on baffles (hemisphere loading) to minimise dif piezo-electric tweeters (those fitted with integral plastic horns a few inches across) is very de endent on the mounting topography within Jack Dinsdale
Cark Din
Cedfordshire
Ben
\(\star\) March, May and June, 1974. Reprinted in

\section*{CARTRIDGE \\ ALIGNMENT}

Good grief, Mr Frost (Letters, January), how ing the concept of pickup arm ro promulgat ing the concept of pickup arm rigidity as an
over-riding design concern if you want to intro-over--riding design concern if you want to intro-
duce further, unnecessary bearings? It's no
quite so specious an idea as the infar quite so specious an idea as the infamous thread
suspended pickup arm, but . . As a fina suspended pickup arm, but ... As a final
touch, perhaps the APT design team should
develo develop it.
Keith Howard Teddington
Middlesex

\section*{DIGITAL OPTICAL RECEIVERS}

Dr Garrett concludes his review of receivers for optical fibre communication with the theory of digital reception and gives practical achievements with p-i-n diode/f.e.t. receivers

In a receiver for a binary digital system, he aim is to process the signal in such a way as to be able to distinguish between wne, with the minimum possible error. In this way we seek the best estimate of the original message from the attentuated, distorted and noisy signal in the receiver. Commonly the signal is derected, amplidecision gate which is opened for a short interval at the centre of each bit period by a pulse from a clock circuit. This interval is called the decision time. Assume that, for a received zero bit, the receiver output voltage \(v(0)\) at the decision time has a mean ceived one, the mean is \(m_{\mathrm{I}}\) and the variance \(s_{1}\), Fig. 9. Because the quantum
noise is signal-dependent, \(s_{0}\) and \(s_{1}\) are noise is signal-dependent, \(s_{0}\) and \(s_{1}\) are
different, in contrast to microwave transdifferent, in contrast ty that \(v(0)\) has a Gaussian distribution, although the multiplied quantum noise has in fact a compound Poisson distribution. The error probability is then
where \(m_{1}-m_{\mathrm{e}}=Q\left(s_{1}+s_{0}\right)\)
(1)


Graduating from Trinity Coliege,
Cambridge in 1965 , lan Garrett completed 1969. He joined the Post Office Research Department, now British Telecom Research Laboratories, as a Research Fellow working on the
transport reactions. In 1971 he became group leader responsible for the preparation of compound semiconducting
films and crystals. Since 1976 he has lead a films and crystalis
section responsible for optical t transmitters and receivers and integrated optical
devices. devices.
WIRELESS WORLD MAY 1982

\section*{by lan Garrett}

This says what difference there must be in optical power between the zero and one \(Q\), which is related to the signal-to-noise ratio (in fact, \(4 Q^{2}\) ). The equation gives the error rate. For example, \(Q=6.00\) for \(P_{\mathrm{e}}=10^{-9}\); small changes in \(Q\) produce large changes in error rate. For design error rates of this magnitude, errors arise from the far tails of the noise distribution mean. That is why accurate models of noise statistics are important in optical systems. In fact the Gaussian approximation used here is successful at predicting error rate as a function of mean signal
power, but is poor at giving the correct signal threshold level and the optimum avalanche gain, for this reason.
The theory of optical receivers enables calculation of \(m_{0}\) and \(m_{1}, s_{0}\) and \(s_{1}\), in terms of the received optical waveform and the
component values of the receiver. One can then predict the sensitivity of the receiver and model how it is affected by changes in receiver or system parameters. Details theoretical analyses are listed in the bibliography, and is only the very simplest case power \(p(t)\) is \(p\) during a one-pulse and zero during a zero-pulse, the pulse energy for a one-pulse \(b_{1}\) is \(p T\) and for a zero-pulse \(b_{0}\) is zero. The photocurrent ( \(i_{p}\) ) is then ing a zero pulse. This current is filtered by the receiver front-end.
A typical circuit is shown in Fig. 9 with the equivalent circuit for noise analysis. The photocurrent is then amplified and limiting filter \(H(f)\) resulting in an output voltage \(<v_{\text {out }}>\), which corresponds to \(m_{1}\) or \(m_{0}\). The noise sources which contribute to \(s_{0}\) and \(s_{1}\) are the amplifier thermal noise, the
multiplied quantum noise and excess avalanche noise, and the shot noise on the photodiode dark current. The meansquare noise voltage at the receiver outpu may be expressed as
\(\left\langle v_{\mathrm{R}}^{2}\right\rangle=(h v \eta)^{2}\left[M^{x} T I_{2}\left(\left\langle i_{\mathrm{p}}^{2}\right\rangle+I_{\mathrm{d}}\right) / q+Z / M^{2}\right]\)
(2)
in which \(T\) is the bit-time, \(M\) is the current gain of the photodiode, \(I_{2}\) is a dimensionis the dark current, and \(Z\) is a dimensionless parameter characterizing the amplifier noise. In fact, \(Z\) is the r.m.s. amplifier
noise voltage normalized with respect to
 Fig. 9. In the unfiltered output pulse from
an optical receiver, the shaded region an optical receiver, the shaded region
indicates the variance (mean-square noise voitage), shown to depend on signal level. and one bits (spaces and marks). Pulse is slightly dispersed so that some energy is
outside the bit-time \(T\).
the receiver's response to one photoelectron. Typical values are \(10^{5}\) at a few
Mbits/s to \(10^{7}\) at a few hundred \(\mathrm{Mbits} / \mathrm{s}\). This equation also assumes that \(m_{1}\) ha been normalized to be equal to \(b_{1}\), th optical energy for a one pulse.

Shortly before this article went to Laboratories at Martlesham Heath announced the transmission in the laboratory of an optical signal cap able of carrying neariy 2000 simul km of optical fibe calis over 102 need for intermediate repeaters. Operating at 160 Mbaud , this is the longest single-span fibre system yet demonstrated. Many of the British Telecom's were made in Martlesham, including the ver low-loss fibre and the receiver, which is the most sensitive in the world at wavelengths between 1.3 diode, of the sort described in this article, with a Plessey GAT4 m.e.s.f.e.t. were used for the critical first-stage amplifier


Fig. 10. In this typical circuit for an optical receiver the broken-line connections and the pea control the gain. Noise model of the receiver shows principle noise sources and equalizing filters (see text).

More detailed treatments listed in the More detailed treatments listed in the
bibliography take into account the shape of the received pulses, pulse spreading into neighbouring bit-times because of dispersion, and other system impairments, and
give detailed expressions for \(Z\) in terms of give detailed expressions for \(Z\) in terms of simple case first and then look at some of the results of the detailed theories.
Consider a p-i-n photodiode which has nsignificant, so from quantum noise is
\[
s_{1}=s_{0}=\frac{h v}{\eta} \sqrt{Z}
\]
so from equation 1
\[
m_{1}=b_{1}=2 Q \frac{h v}{\eta v} \sqrt{Z}
\]

With typical component values, \(Z\) might be \(10^{6}\). So with \(Q=6\), we need 12,000 agreement with the earlier rough calcuation. Using discrete components, a unity-gain photodiode provides a receiver ensitivity typically 10 to 15 dB worse than an avalanche diode. However, by hybrid
integrating the p-i-n diode with the first amplifier stage using a gallium arsenide m.e...f.f.e.t., the input capacitance of the receiver can be reduced so that \(Z\) falls to


Fig. 11. Hybrid p----n f.e.t. integrated optical receiver for high data rates,
say 3Mbitss upwards in a say 0 dard 14 -pin d-i-I-1 package is the
stast sensitive so far for the range ito \(1.6 \mu m\). Input fibre tail, visible
it the top left, enters package a pupseorting the photodiode
sums vertically so that it can be Muminated through the substrate
The thick-film circuit comprises The thick-film circuit comprises a GaAs me.e.s.f.e.t. input stage
bipolar shunt feedback and

10,000 or less. The receiver noise parame er \(Z\) is proportional to \(C^{2} / g_{m}\), at high data rates where \(C\) is the total input capacitance (photodiode, gate-source and stray capaciance) and \(g_{m}\) is the transconductance. In 0.5 pF and \(g_{\mathrm{m}}\) is 20 ms . Such receivers have a sensitivity of -44.2 dBm at 160 Mbaud and -40.1 dBm at 294 Mbaud , at \(1.3 \mu \mathrm{~m}\) wavelength, and similar sensitivity at \(1.55 \mu \mathrm{~m}\), better than that of a.p.d. re-
ceivers. The p-i-n/f.e.t. hybrid also offers the advantages of low-voltage operation, no need for feedback to control the avalanche gain, simpler device technology and probably greater reliability ypecivers are shown in the first part of this article. The receiver uses a high impedance integration) front-end amplifier for the best performance, although a trans-impedance amplifier could be used with a ic (time constant typically 1000 times the bit period) has to be equalized, which can be done simply by differentiating with a capacitor-resistor arrangement. Fig. 11
shows a typical receiver module Look now at how the sensitivity is rehotodiode. Fig. 12 shows some theoretical results for the mean number of photoelectrons required per bit time \(n\) and optinum avalanche gain \(M\) as a function of the number \(N_{\mathrm{d}}\) of dark current electrons per
bit-time. Parameter \(x\) is the excess noise exponent of the a.p.d. and Fig. 12 is calculated assuming \(Z=10^{6}\), typical of a receiver
using discrete components at a few using discrete components at a few
hundred Mbaud, and with zero optical power on zero-pulses and no pulse spread-
ing.
It can be seen that when the dark current is negligible, we need about 300 to
1500 photons per bit-time, depending on the noise properties of the photodiode. When the dark current is large, the number of photons per bit-time which is needed is roughly proportional to the square root of the number of dark current
electrons. The noise properties of the diode become far less important. This is hardly surprising as the dominant noise is then the shot noise on the dark current, and both are subject to the excess noise of the photodiode. The optimum gain de-
creases markedly once the dark current becomes a significant noise source. Clearly it is important to minimize \(N_{\mathrm{d}}\) and to a lesser extent to reduce \(x\). Note hat a leakage current of 160 nA gives \(N_{\mathrm{d}}\)
of 1000 at lGbaud, which is large enough to affect the optimum gain and the receiver sensitivity. At lower data rates the effect would be greater still.
Fig. 13 shows how \(n\) and \(M\) vary with extinction ratio \(\epsilon\) and pulse spreading
(extinction ratio is the mean power on zero-pulse divided by the mean power on one-pulse; if it is not zero the optical power on the zero level contributes to the noise


Fig. 12. Receiver sensitivity and optimum avalanche gain as functions of the number of dark
current electron per bit-time (see text)


Fig. 13. Receiver sensitivity and optimum avalanche gain as functions of the source \(\alpha\) is the r.m.s. width of the impulse response of the fibre normalized to the bit-time \(T\), and assumed to be Gaussian for convenience in calculation, ie it is a measure of the bandwidth of the fibre.
\(s_{0}\) ). The pulse spreading is represented by \(\alpha\), the normalized r.m.s. width of the fibre impulse response, assumed to be gaussian.
The pulse originally launched into the fibre is originally launched into the cribe is taken to be rectangular and to current is assumed to be zero. Notice that the receiver sensitivity is strongly affected by pulse spreading and by non-zero extinction, and the optimum gain is reduced by zero-level noise and by fibre dispersion,
the effect being greatest when \(x\) is small. This type of calculation, which assumes gaussian noise statistics, tends to over-estimate the optimum gain although relative nagnitudes are predicted more accurately. Obviously, spreading considerable dark current ( \(\boldsymbol{N}_{\mathrm{d}}=100000\) ) reduces the receiver sensitivity very much, and also reduce the optimum avalanche gain to near unity.

\section*{Future developments}

There are some obvious approaches to improving the sensitivity of present optical receivers. The p-i-n f.e.t., currently the
most suitable for the important wavelength most suitable for the important wavelength reducing \(c^{2} / g_{m}\); that is by developing small-area photodiodes ( \(30 \mu \mathrm{~m}\) diameter), very short f.e.t. gates \((0.3 \mu \mathrm{~m})\), and by increasing the transconductance. The mixed compound InGaAs may be a better
f.e.t. material than GaAs in the future because of its high carrier mobility, particularly if it can be cooled, and it would also permit monolithic integration of the f.e.t., WIRELESS WORLD MAY 1982
the photodiode, and eventually other receiver components. Between 5 and 8 dB could be gained here. Avalanche photo-
diodes could offer some improvement, at least over present day p-i-n f.e.ts, if a lowleast over present day p-i-n i.e.ts, if a lowwork on \((\mathrm{CdHg})\) Te looks promising, although it is at a very early stage of development yet.
A third possibility is to amplify the optical signal before detection, using a Fabry-
Perot or a travelling-wave amplifier. These devices would be similar in structure to injection lasers; their biggest problems are noise due to spontaneous emission which can be reduced only with a very narrowthe case of the Fabry-Perot amplifier. An optical amplifier is an almost essential component for optical integration of any useful complexity, so there is considerable incentive to overcome these problems. cal transmission systems with heterodyne cal transmission systems with heterodyne
detection. The outstanding problems here are: divising an optical source and local oscillator with sufficiently narrow linewidth; tracking the local oscillator; oblocal oscillator when they are mixed on the photodiode; and controlling the polarization of the receiver optical signal. The payoff for overcoming this daunting list of problems is not only increased receiver
sensitivity ( 10 to 15 dB possibly), but the familiar advantages of using the frequency and phase information on the carrier which is present optical communication systems is lost.

Further reading Physics of Semiconductor Devices, by S. M Sze. Wiiley, 1969.
Optical Fibre Communications, S. E. Miller Optical F. Chynowmunications, S. E. Miller
and A. G. Chademic Press, 1979 .
Optical Fibre Communication, by he Technica Optical Fibre Communication, by the
Staff of CSELT. MoGraw-Hill, 1980 .
Receiver Design for digital fibre optic Staff of CSELT. MCGraw-Hill, 1980 . communication systems, by S. D. Personick.
Parts 1 and II, Bell Sys Tech y vol. 521973 p. Parts 1 an
\(843-86\).
Simplified Simplified approach to digital optical receiver
design, by D. R. Smith, R. C. Hooper and I. Garrett. Opt Quant Electr vol. 101978 p. 211 Properties of avalanche photodiodes, by P. P.
Webb, R. J. McIntyre and J. Conradi. RCA Rev, July 1974 .
Receivers for optical communications: a Receivers for optical communications: a
comparison of avalanche photodiodes and p-i-n f.e.t. hybrids, by D. R. Smith, R. C. Hooper
and I. Garrett. Opt Quant Electrvol. 101978 p. 2n3-300.
InGaAs p-i-n photodiodes for long-wavelength
fibre-opic systems by R F. Leheny, R E. fibre-optic systems, by R. F. Leheny, R. E. 1980 P. \(713-5\).
III-V alloy hetero structure high-speed avalanch e phototiodeses, by H.D. D. Law, K.
Nakano and L. R. Tomasetta. IEEEf Nakano and L. R. Tomasetta. IEEE J Quanum
InGaAsP heterosstructure avalanche
photodiodes photodiodes with high avalanche gain, by K.
Nishida, K. Takaguchi and Y . Matsumoto. Appl Phys Leet vol. 351979 p. \(251-3.1\)
Avalanche multiplication and noise Applanche multiplication and noise
Avaran
charateristics of low darkcharacteristics of low dark-current
GaInAsP/nP avalanche photodetectors, by V . GainAss/hns avalanche photodetectors, by V.
Diadiuk, S. H. Groves and C. E. Hurwitz. Appl
Phys Phys Lett vol. 37 1980 P. 807 -10.
Band structure dependence of im
Band structure dependence of impact ionization
by hot carriers in semiconductors: GaAs, by T. by hot carriers in semiconductors: GaAs, by
P. Pearsal, F. Capasso, R. E. Nahory, M. A. Pollack and J. R. Chelikikovky. So
Electron vol. 21 1978 p. 297-302
Electron vol. \(211978 \mathrm{p} .297-302\).
Required donor concentration of epitaxial lay Required donor concentration of epitaxial layer
for efficient InGaAsP avalanche photodiodes, by Y. Takanashi, M. Kawashima and Y. Horikoshi. Japan \(\mathcal{Y}\) Appl Phys vol. 191980 P. PIN-FET hybrid optical receivers for longer wavelength optical communications systems, by R. C. Hooper, M. A. Z. Reman, S. T. D.
Ritchie, D. R. Smith and B. R. White. 6th European Conference on Optical
Communications, York, Sept 1980

\footnotetext{
In brief...
Technician engineers change their image. The term 'technician engineer' was coined to cater
for the non-chartered electrical and electronics ongineer. But the IEETE feel the name has become confused with the general description
technician' and that this may be a stumbling 'echnician' and that this may be a stumbering
lock to the understanding of the role played by block to the understanding of the roe played by selves cherporate membitution of Electrical and clilectron-
ics Incorporated Engineers, as a reflection of a ics Incorporated Engineers, as a reflection of a
professional body incorporated other than by professional body incorporated other than by
charter, and which requires a specific level of
achievement and qualification for its memachievement and qualification for its mem-
bership. Corporate members are now entited to bership. Corporate members are now entited to
call themselves Incorporated Engineers (Electricall themselves incorporated Engineers (Lecti-
cal and Electronis) and to use the letters FIEle-
cIE or MIElecIE.
}

\section*{NEWS}

\section*{Cables and politics}

A broadband cable system connected to all
houses in urban areas and covering about half the population is the erecommenngation of the
Government's IT Advisory Panel. Although all Government's IT Advisory Panel. Although all
the services to be provided are not specified, it is the services to be provided are not specified, it is
suggested that the system should include tv
channels, f.m. radio channels, and the panel suggested that the system should include tiv
channels, f.m. radio channels, and the panel
also recommends that the system should have a also recommends that the system should have a
two-way link which would allow any information service to be interactive, to incluce such
facilities as links with a bank account or electronin shopping. There could also be moni-
toring of premises against burglary or fire and toring of premises against burglary or fire and
the emergency services could be summoned the emergency services
The scheme involves an entirely new network
as the existing telephone network does as the existing telephone network does not offer
sufficient bandwidth. It could link in with those British Telecom networks which are of suffi-

\section*{Satellite tv gets go-ahead}

On the fourth of March, the Home Secretary,
William Whitelaw, announced in the House of Wiliam Whitelaw, announced in the House of
Commons that the country should make an
early start with direct broadcasting by satellite early start with the aim of hasing a service in
(DBS), with operation by 1886. Because of the importance of
making this early start, the Government had making this early start, the Government had
concluded that the best course would be to start conclaced that the best course would be to start
witc two channels initially, though h his could be
increased later to to te maximum of five channels prermisted by international allocation. The services would be transmitted at powers sufficent or individual reception and for community reeption with cable distribution.
The system is to be finance here were indications that there were interested participants in the aerospace and electronics Astries who were ready to pay a part had been decided to award both DBS channels o the BBC as they had already formulated
proposasas for the programming of such chanproposals for the programming of such chan-
nels. One channel would be a subscription serice including a substantial element of feature iilms and major sporting, cultural and other events not presently available for transmission
through the usual channels. The other would be a service which would draw on the best ty programmes from around the world, and would licence fee.
The Home Secretary said that although the IBA and commercial television companies had also shown some interest in providing DBS ser-
vices, "their plans were less well advanced. vices, their plans were less well advanced.
Additionally, more time would be needed to evise the right framework, which would be ikely to involve legislation".
But the IBA say that their lite broadcasting are as well prepared as any
from the BBC from the BBC. Following the Government study document on DBS last year, the IBA has
argued for the use of satellites to improve picargued for the use of sateilites to improve pic-
ture quality and for the need to have uniform
standard standards throughout Europe, because of the
overlap of satellite footprints. IBA enigineers overlap of satellite footprints. IBA eingineers
have developed the muiliplexed anialogue componenit technique for satellite analogue com-
broadcasting
which overcomes the problem which overcomes the problems of incompatibil-
ity between the different colour systems in 64

Europe, providing a single 625 -line system with clearer pictures than are presently available on sound. Only one design for an adaptor unit would be required throughout Europe. They also argued that they had more commercial ex-
perience which would be useful for organising a perience which wou
subscription service.
Following immediately on the Home Secrelary's announcement, British Aerospace, Marnouncement that they would take equal shares in a new company, United Satellites, to provide Britain's first national broadcasting and telecommunications satellite system. The three
companies had already investigated potential markets, and the technical and operational means needed bout in the long and short term. The system would probably have the capacity
for two tv channels and three or four communications channels. There could be sufficent bandwidth to transmit high-definition tv and
digital sound channels and the possibility of digital sound channels and the possibility of
ransmiting a Prestel-type service this way could also be possible. Discussions with broadcasting and celecommunications organisations
will define the facilities to be provided. The satellites will be leased to the users. The satellite, to be known as Halley 1 , as the 1986 launch will coincide with the appearance of Halley's Comet, is likely to be of a similar type
to the European Communications Satellite
(ECS) and it is panned to hin (ECS) and it is planned to have two satellites in on the ground ready for launching and a third Un the ground ready for launching.
United Satellites hope to sell their satellites around the world and believe there is a potential
market for up to 100 of them.
- The IBA is participating in the experimental The five-week tv experiment, to start at the end of this month, includes four sound channels, each with a different languarge and che IBA's,
teletext system for sub-ititing. The closed-cit eeletext system for sub-titing. The closed-cir-
cuit service is to be transmitted using a mobile cuit service is to be transmitted using a mobile
dish antenna via the ESA orbital test satellite. A Pan-European service is due to be launched
in 1986 and the IBA has suggested that the ad British satellite should carry that service.
cient bandwidch and thus be provided with
packet switching. Each home would be fed parrough a cable, probably coaxial, with channe selection provided at the distribution point
which would have the full bandwidth service which would have the full bandwidth service
and would be able to serve up to 100 houses. In arguing for urgency, the panel say that existing cable distribution networks are ceasing
to have much value when the county is to have much value when the country is well
provided with broadcasting transmityers provided with broadcasting transmitters. The
panel believes that cable would be the best way pance distributinges the direct broadcasts from satel-
lites the lites; the PAL system comes out of patent res-
trictions at the end of 1983 and could lead to fliooding in the large-screen tv market of cheap sets from the Far East, leading to the downfal of our domestic tv manufacturing industry. If a
decision were taken for an early launch of decision were taken for an early launch of the
cable system, the telecommunications industries
involved would get a boost and a world lead
with the possibility of high One of the pre-requisites for such a system is that current restrictions should be withdrawn and that potential information providers or
broadcasters be allowed to transmit they like, within the bounds of decency or sedithey like, within the bounds of decency or sedi-
tion. There should be a self-regulating body
simitar to similar to those in advertising and in newspap
ers.
But as the panel believes that the system
should be should be selff-financing, requiring no public
funds at all, it sees a further need for urgency The system should be at an advanced stage of
planning before the next General Election be planning before the next General Election be-
fore a possible change of Government could lead to a change in policy, so that potential investors,
especiailly programme providers, can be assured
of especially programme providers, can be assured
of a return on their investment.

\section*{Maritime satellite gets sunstroke}

What was to have been a blaze of publicity when the Minister for Information Technology, Mr
Kennech Baker was to have Kenneth Baker, was to have made the first
shore-to-ship telephone call by way of the new a damp squib when it was announced that the a damp squib when it was announced that the
satellite had certain anomalies which needed to
be sorted out beforo se sorted out before it became fully operational.
The anomalies had been The anomalies had been caused by an over-
active sun which had produced an unusually high number of sunspots. Sunspots emit high-
nergy particles which energy particles which when they encounter a
satellite can electrostatically charge the outer satelilite can electrostatically charge the outer
thermal blanket of the spacecraft. As different surfaces are charged at different levels, this can give erse to arcing and if any electromagnetic
disturbance pentrates the screening this can disturbance penetrates the screening this can
cause spurious pulses in the electronics. The cause spurious pulses in the electronics. The
first occasion on which this happened in Ma-
recs-A, it caused the orientation system recs-A, it caused the orientation system to think
that it had lost contact with the earth. It autothat it had lost contact with the earth. It auto-
matically went into a 'search' mode when it rotated slownt to find the earth again. This manoeuvre took eight hours before contact was re-
established and this caused a whole series of established and this caused a whole series of
checks to be carried out to assure the ground controllers and users that all was well. It was not
possible to complete these checks before the possible to complete these checks before the
official inauguration of the service. Since then there have been further small 'glitches' caused by sunspot activity.
A major event
A major event during the initialisation of the
satellite was the failure on battery discharge regulator. Standby modules were switched in, but there is no further replacements for these components. A spokesman
from British Aerospace told us that although was worrying to lose the redundancy factor so
early into the mission they were confident that his would have no e effect on were confident that the satellite of seven years and more. They were nomalo anomalous behaviour of the vehicle in order

WIRELESS WORLD MAY 1982


Marecs - A.maritime communications
satellite suffering from anomalies caused by an overactive sun.
which is to occup
a geosynchronous orbit over The two Marecs spacecraft in conjunction ship-to-shore telecommunications system which covers all the oceans. Marecs-A is the first European Space Agenccy's communications satellite to enter commercial service. It is also the
first to be dedicated to merchant shipping, and the firss to be leased by ESA to an international rganisation, Inmarsat.
Marecs offers some
Marecs offers some 40 telephone circuits,
four times the capacity of the Marisat satellite it

\section*{3-D spectacle}

The first British broadcast of 3-D tv takes
place on May 4th at 19.00 h over the transmitters place on May 4th at 19.00 over the transmitters his follows the four 3 -D tv programmes
tansmitted over Norddeutscher Rundfunk in West Germany, the first of which was on Feb-
tary 28th. TVS is negotating right to some of uary the German material, and also producing some original British material. The British proTramme, one of the weekly series The Real World, deals with three-dimensional images in illustrative purposes.
The system being used for these transmis-
sions is the old and imperfect method of lyph stereo': that is, separation of the two mages is achieved by colour coding, and the
viewer has to wear red-and-green spectacles. viewer has to wear red-and-green spectacles.
This is clearly not asystem with any prospect of fuutre acceptance as a practical method for
broadcast stereo. It is however at the present time the only method by which stereo images can be broadcast, pending future technical de-
velopments. Consent has accordingly been given by the IBA to TVS transmission as a one-
off experiment. of experiment.
WIRELESS WORLD MAY 1982
laboratories of Philips Ltd. Anaglyph image green phosphors on ty tubes have quite a hit red content. This means that 'crosstalk' is intro which should be confined to the right eye Which should be confined to the right eye. mission system is istself imperfect, and allow
adrans some spread of colour information to the wrong
guns. Philips have developed a method of cod guns. Philips have developed a method of cod-
ing the master vide tapes, which at present
remains secret, to eliminate this overlap and ing tee master video lapes, which at present
remains secret, to liminate this overlap and
ensure the best possible separation of the two ensure the best possible separation of the two
images that can be obtained within the PAL images system.
The greatest problem remains the provision df the red/green anaglyph spectacles. TVS has nettes, and are distributing one in every copy of Tetes Times in the Southern region. Even so,
seems there will be at best one viewing device seems there will be at best one viewing device to The programme cannot of course be networke \(f\) sufficent f sufficent spectacles. Lucky viewers outsid
he region who are able to pick up TVS pro rammes will have to make their own arrange rents to get hold of a pair of anaglyph specs. Viewers who have seen the German pro the results are remarkably successful; the crosstalk or double-imaging only becomes worrying when the normal, rather restricted, depth range
for any scene is exceeded. And the 3 -D scenes particularly in the 'live' studio sequences, are certainly good enough to serve as a glimpse in the future. The people in the studio scenes,
even in black-and-white, look much more like ounded human beings than the usual 'flat' t images.

\section*{Mercury and \\ British Telecom}

The consortium of Cable and Wireless, British een given a licence to operate a private tele be known as Mercury, will have access to th ublic, switched network when 'appropria erms' have been established. It will also pro cations via satellite. The licence has bee granted for a period of up to 25 years wit of State for Industry said that "the Britis Telecommunications Act 1981 and the licenc have been structured in a way to enable the
Government to ensure that both British Telecom and the licensee co-exist and compet generate new services and job opportunitus nd to enhance customer choice within the \(U\) Kile increasing the national share of the world elecommunications market".
It seems that the competition has already
started with BT cutting its charges on some of started with BT cutuing its charges on some the main trunk lines joining tre main business
and industrial centres. The principal reason for anstituting Mercury was the high cost of trunk calls.
All this may be thrown into the melting pot
the telecommunications network is to be bound \(\mathrm{n}_{\mathrm{n}}\) with the proposed tv cable system. Iain Ca is to introduce a new Telecommunications Bi
towards the end of the year. The Bill will pro-
pose the selling of about half the shares of BT the public and to establish a new telecommunications authority to oversee the provision
cable tv, telephone, data and electronic mal cable tv, telephone, data and electronic mail
links. The so-called Busby Bonds, announced links. The so-called Busby Bonds, announced
by the Chancellor in the Budget with which it \({ }_{B T}\) was planned to inject public investment into BT, are now likely to be replaced by the much
wider de-nationalisation. BT say the report is "pure speculation"

\section*{Bildschirmtext}

At the heart of Prestel is the GEC 4080 compu
ter which uses its own language, Babbage. With a five-year lead over any rivals, GEC must have felt that they had a very good chance in the world's markets and particularly in Europe
Their confidence received a severe blow however, when the West German Bundespos placed an order worth several millions with bav. have not demonstrated any system in public.
The GEC equipment has undergone a field trial in Germany, and the Bundespost has selec-
ted a Prestel-compatible system, mended by the CEPT, but the selection of an IBM system means that IBM will have to write all the software by the contract deadline in 1983 .

\section*{Sweden in space by 1984}
weden's Space Corporation is likely to be given earch aro requested for this year's space re\(1979 / 80\) figure. About half of this will be contri buted to the European Space Agency wher Sweden collaborates actively in the programme of research. But its national programme in cludes its own space research where the larges
proiect is the Viking satellite, to be launched b proiect is the Viking satellite, to be launched b
Ariane in 1984 for North Pole magnetospher studies, as well as the industrial Tele-X project Due for launch in 1986 from Guyane Spac Centre, South America, Tele-X is an experi
mental telecommunication satellite that wil have pre-operational direct broadcast applica-
tion And it will provid hith-speed tion. And it will provide high-speed digital communication for inter-office links, a telectyp ser
vice to mobile stations in vehicles, an propagation measurements in the \(20-30 \mathrm{GH}\) band for high-speed digital dat
tion, as well as wideband services. Monitoring oil spillages is the chief applica tion of the Corporation's other main programme - in remote sensing. Marine surveillance from aircraft determines oil thickness and volume, a
microwave radiometer while a laser fluorosenso classifies oil type, this information being
transmitted to oil combat yessels. sors also monitor ocean ice distribution and sors also monitor occan ice distribution and
thickness, atmospheric pollution and map vege-


Auditoria designers are often "very surprised" with the results they obtain, said Hugh Creighton, acoustical consultant to London's latest concert hall in answer to our question
about reverberation time turning out lower than planned. "Hall acoustics is not a comple science" he reminded us, "but design guided by science"." For although r.t. had been bee calculated from the hall's volume and absorbencies to be 1.8 seconds, it turned out to
measure only 1.4. But the simple expedient of measure only 1.4. But the simple expedient of adding hardboard to the backs of the (fixed)
seats increased the figure to 1.6 seconds, or 1.9 with an audience. And that sems to satisy seats increased the figure to 1.6 seconds, or 1.9 with an audience. And that seems to satisfy
the LSO, according to a spokesman, for whom it was designed. A height restriction meant that the concrete roof beams protrude into the auditorium, their disruptive effect being
reduced by the suspension of reduced by the suspension of some 1,000 difftusing spheres (some also acting as lighting
fittings) open at both ends to prevent undue aborption. And while siting to hell ase fittings) open at both ends to prevent undue aborption. And while siting the hell close to
the foundations of the Barbican complex may underground railway, it didn't obviate the need to re-lay the tracks and mount them on
rubber.

\section*{tation,}
hanges. Changes.
The Corporation manages the Esrange statio
which receives, processes stores and distribute which receives, processes, stores and distribute scheme, and regularly collects data from in ionospheri soundings to give investigate electron de
profile (see WWW February issue, page 37).

\section*{Where is \\ Chernobilsky?}

The position of the Russian electronics enginee Borer Chernobisky who, as we reported in Oc
tober KGB, is giving his wife Elena great cause fo alarm. After his harassment and arrest on a relatively trivial charge (hitting a policeman
Chernobisky was sentenced to one year's im prisonment in a corrective labour camp, muc against the wishes of the court, who came unde a great deal of public pressure to relax the in
tended five-year sentence. The court sentence tended five-year sentence. The court sentence
was that Cherrnobilsky be taken to the labour camp immediately, but instead was held in prison for two months, whereupon he disappeared.
According to our informant, he started his jour ney to the camp many weeks ago, but neithe his destination nor present whereabouts are
known, in spite of a telegram from his wife to L known, in spite of a telegram from his wife to 1
Brezhnev, and other Soviet leaders, to which she has had no reply. His wife and friends feacause he was awarded a 'ligh'' sentence, and cause he was awarded a light' sentence, and
that his health will be damaged by the extremely severe conditions on the journey and in the
labour camp.
BBC micro
The gremins got into the BBC micro program listings at the Paisley Microelectronics Educa-
tional Development Centre, John Gordon tells
us Routine (f) on page 82 , March isue, should us. Re
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{500 procraxcaic (450, , 100 )
600 privi tax_to pay} \\
\hline \multicolumn{2}{|l|}{} \\
\hline &  \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
1020 t_{t}^{t}
\]}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& 1030 \mathrm{aid} \\
& 1040 \\
& 1040
\end{aligned}
\]} \\
\hline \multirow{3}{*}{1050} & \\
\hline & tax_topay=tax \\
\hline & pay + rate \({ }^{\text {Pay }}\) - \\
\hline \multicolumn{2}{|l|}{1060} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}

It is useful to use lower-case characters for datanames he points out: this gets round the prob-
lem of BASIC keywords appearing at the beginning of a dataname.

\section*{Also in this issue . Book notes 49 Communication news 42 Corrections 41 \\ In our next issue 77 \\ Langmuir thin film trough for \\ Teledon videotex in the UK 40}

\section*{EPROM PROGRAMMER}

Most commercially available e.p.r.o.m. programmers are expensive as they include software and other facilities to enable them to be used on their own. The cost of programmer can be significantly reduced if it is designed for use with an existing micer as shown in this second of two articles. The design pres for 2708, 2716 and 2532 e.p.r.o.ms, but with small modifications other devices may be programmed.

On entering the program one is given th system options and prompted to reply either Y (yes) or N . Next the addresses are requested in hexadecimal numbering,
starting from 0000 . If the e.p.r.o.m. alstarting from 0000 . If the e.p.r.o.m. al starting address must be given as 0100 starting address must be given as say, DCBO. Options and addresses are displayed on the monitor screen. Whe sufficient information has been given th program repeats the e.p.r.o.m. type and
prompts you to press \(G\) (go). At this poin the scratchpad has been loaded with dat relevant to the e.p.r.o.m. selected and whether it is in read or write mode, a defined by the options on entering th program. (A changeover d.i.1. switch is nience this was fitted to the plug-in card carrying the socket together with a jack fo the program voltage.)
Scratchpad data is loaded by the index register as though it represented addresses
this seems to be the quickest method of loading for the 6800 . Data stored in the scratchpad is given in the panel and ex plained as follows. The device code in AS CII enables it to be displayed on the monitor screen and serves as a check that the
scratchpad has been loaded correctly Number 04 signals the end of the ASCI data. The term "pin profiles" is one I've coined to define the logic levels on a por which are independently varied within program. The exisung address port is in-
sufficient to drive the e.p.r.o.m., which needs 12 lines, so some are borrowed from the control port. By OR-ing the pin-profile with the other data the port will support the two functions. For example, during will be changing and the levels on the control will be static, during write the control part will change from pulse off \(\rightarrow\) pulse-on \(\rightarrow\) pulse-off during each changed address. The loops will normally
\(=1\), except when the 2708 is being pro \(=1\), except when the 2708 is being pro-
grammed which requires 200 loops. It is not permissible to apply \(N\) pulses to one location and move on. The number of loops may be varied in the range 100 to 200 was chosen for convenience in generat ing the timing. Locations \(\mathrm{E}, \mathrm{F}\) contain a number which is used with the index register and decremented to zero. The time at the pulse output (port) should be mea-
sured with a universal counter or an accusured with a universal counter or an accu-
rate 'scope since it depends on the software route taken by the programmer, as well a the system clock frequency. Random WIRELESS WORLD MAY 1982
by H. S. Lynes
access memory addresses determine the area of the system memory that will b start/finish enables part-used ones to be added to. This is not to be done with 2708 as already explained. The control word is either 80 (port B is output, so writ e.p.r.o.m.) or 82 (port B is input, so rea the 8255 in mode 0 . (Other numbers in the control register will cause all kinds of trouble).
The shorthand CAD and CAP were useful since they are frequently referred to i the software. The "loops left" is loaded
with the value of the loops at location \(A\) and decremented on starting at the firs e.p.r.o.m address, i.e. when CAP is set to the address at 14,15 . In the case of a 2708 1 so the same addresses must be than 1 , so the same addresses must be proreading an e.p.r.o.m. whether dumpin the contents into r.a.m. or checking program cycle, the loop facility is not needed as the program will exit when either CAD or CAP reach the respectiv
addresses in 12,13 or 16,17 . Thus the pro grammer should ensure that whichever is the smaller number of locations will caus the program to exit. The last three loca-
tions are loops-left, as explained, and the error address, to be explained late Port control. Since the software contro the 8255 it is essential to check that all well before proceeding. The sequence is a follows. Select the e.p.r.o.m. type, th for both e.p.r.o.m. and system r.a.m. Th program responds by displaying the type prompt to press G. There are two chance prompt to press G. There are two chance to get this right: it's frustrating to enter the
data again just because you accidentally touch the space-bar. Before the program starts the control port is checked for eithe 80 or 82 , since other numbers will cause chaos. At this point the scratchpad ha user and once in software to fairly tight margins (2/256). Any error should be resolved by starting again. After a program sequence the 8255 is put into the read mode and the data is compared with the r.a.m. area specified. Any error will store
the error address at the scratchpad \(1 \mathrm{~F}, 20\) locations. A message is written on the screen to invite inspection - the system 'errors' each time at the last address (whic proves it's working) since to program one
e.p.r.o.m. location, say 01 F 2 , requires the e.p.r.o.m. location, say \(01 F 2\), requires the
user to enter ep.r.o.m start \(=01 F 2\) and, logically, e.p.r.o.m. finish 01 F3.
Reading an e.p.r.o.m. This is the easies part. Select the appropriate pin supplie

Scratchpad data defined. Location of the scratchpad is at the option of the programmer
\(0,1,2,3\)
4,5
\(0,1,2,3\)
4
6
Device code in ASClI
EOT code and blank
'read'
'progam' 'pulse-on'

32373038 for 2708 pin profiles e.g. as in Table 1

Loops \(=1\) except for \(2708=\) hex equivalent of 200 - (normally biank, except during verify)
\} Maximum bytes, could be used to check 'space available'
\} delay = pulse time
r.a.m. start address r.a.m. finish
e.p.r.o.m. start e.p.p.r.o.m. finish
8255 control word

Current address data (CAD)
Current address data (CAD)
Coups tedress p.r.o.m. (CAP) -oops left

Entered by user; 'start' must be lower Entered by user; 'start must \({ }^{\text {number than the 'finish' number }}\)
be converted to ASCll if screen display
using the small d.i.l. switch next to th ocket, and enter the necessary informa set-up the 8255 ports by sending 82 (hex) to the control register at X503. Th starting address of the e.p.r.o.m.m. is placed pin-profile is OR-ed with the address in port C and the data read by the c.p.u. from he address of port B . This is stored in the rea of r.a.m. pointed to by CAD using th ndexed mode of addressing. CAD and utside limits and only then will they be incremented until the e.p.r.o.m. data placed in system r.a.m.
The time taken is quite short, but it is possible to run a program from an e.p.r.o.m. in the programmer without
some considerable delay and a dedicated program to do it. In my system a facility xists to move some of the system r.a.m. having set up the new start address on witch the r.a.m. can be made to behave as though it was a programmed e.p.r.o.m., residing at the same address as the e.p.r.o.m will in the finished system. This art be device is enabled when shift ing.

Programming. This is more difficult
 ternal pulse for a defined tume. low forlage, is required, about 27 V easures this voltage and turns an e.d. if it is correct. Thus the light indi cates that the e.p.r.o.m can be pro rammed. The use of a built-in program oltage is left to you; if the ports are likel o be used for general use I think it is safe. witch, address entry; etc is as explained or reading. After pressing G the e.p.r.o.m is placed in the write condition using the in-profile described. A program pulse applied by OR-ing CAP with the pulseThis is timed using the delay routine, after which the address is OR-ed with the write puise-off pin-profile and stored at the port hus the port is in the write mode all th me, some of wioh in in the pulse-o hanged when the port is in plain write mode.
The choice of software timing for the use or the use of a monostable is left lock frequency is not important; but monostable is another i.c. to wire and


Fig. 6. In this transistor interface and reset
1ogic \(P\) C7 is is sedd to detect the high impedance state after reset occurs. This prevents unwelcome voltage appearing on the e.p.r.o.m. socket. Normal operation \(P C 5=\) logic 1 . Notes: checked againstital and should be Measurements must be furer's data. Measurements must be from e.p.r.o.m.
socket. For \(C_{o}\) 1800pF, \(T_{r} 1 \mu \mathrm{~s} T_{f} 1.2 \mu \mathrm{~s}\).



The CSTWE pin needs to be taken low ddress is changed. Since PC4 is only used with 2708 this can be done at the end of any programming sequence, as forerunner to the verify routine.
the interface, with link 1 open.
LED is on when \(V_{\text {p }}\) is high. If no 'scope is available \(V_{p}\) should be set to 26 V using
a \(20 \mathrm{k} \Omega / \mathrm{V}\) multimeter. Test point \(=3.5 \mathrm{~V}\) with link 1 open.
could be susceptible to interference. Sof are timing has its critics too, but whe ther e.p.r.o.oms as well as 2708 s are to be cramming does take time my view. Prominute for every \(1024 \times 8\) bits. Thus for 4 K e.p.r.o.m the processor is tied-up for at least four minutes. If any interference occurs during this time it could cause rouble, so there may be some advantage to be gained by switching off any well-known this can include anything with a thermostatic control inductive load.
Software development. Some of the deelopment, done in hex machine code, was made easier by using the sub-routines available in the monitor, such as the "print ASCII string" sub-routine, and the "input setting-up the scratchpad data. If you wish o develop your own programs for any c.p.u. type, I recommend that you include a facility for additional features you may if the user wants to "read?" and if the esponse isn't 59 (ASCII for \(Y\) ) it goes to "write?", after which it exits. There would be some advantage in writing "extra facilities; enter facility number"; you then enter different routines, to be developed later,
without rewriting the remainder of the software. What you do is to reserve two memory locations at the end of the program (in the final e.p.r.o.m. for the moment a 2716) and set the index register to the address of the first, less two. Thus if
the number entered is 1 the index register will be incremented by \(1 \times 2\), so by going to this location a new starting address may be inserted. By leaving say six memory ocations all FF they may be programmed ater. Arrange the address routines as a developments.
Infrequent users may find some advan tage in making use of a 37 -way D connector and a small plug-in p.c.b. with the socket on it. This is only plugged in when an e.p.r.o.m. is to be programmed
or read. The diagrams show the wiring for the d.i.1. switches connected to pins 18-21, ig. 6 It is essential that such switches ar suitable for the low-power duty that is required. Protect the wiring on this p.c.b from handling; an unetched piece of copmay be connected to 0 V .
Erasing e.p.r.o.ms. It is essential that e.p.r.o.ms are correctly erased before pro gramming is started. This means exposing them to "hard" ultra-violet light for a period of between 5 and 20 minutes, de-
pending upon the strength and closeness of a suitable source. So-called u.v. tubes with fluorescent coatings inside glass will not b satisfactory; this rules out disco black-ligh tubes and soft tubes used to generate art ork. The correct tubes are usually smal -wattage with a quartz tube th pour radiation of 254 nm wavelength. Although satisfactory erasers are availabl commercially, you may be tempted to make your own using a replacement tube. WIRELESS WORLD MAY 198


Take care in the design of a close-fitting lid or drawer to prevent the incidence of u.v. burns eyes or skin. It is a sine qua non to nube-current in the which breaks the drawer) being opened duting the (or period. The addition of a timer is a useful refinement as the tube has limited life. Clean the i.c's window before erasure afterward it may be covered to guard against possible loss of data when it ha e.p.r.o.ms in conductive foam whenever


April 23-25
The Computer Fir, ar Eald Cour (sponod by Practical Computing and Your Computer) Details from Exhibition Manager, IPC Exhibitions Ltd, Surrey House, 1 Throwley Way, Sutton, Surrey
April 25 Audiojumble: sale of audio equipment at the
Gandhi Hall, YMCA , 1 Fitroy Square Gandhi Hall, YMCA, 41 Fitrroy Square
London WI. Organised by Ed Lord 67 London W1. Organised by El.
Liverpool
April 26
Apriateur radio satellites; IEE lecture for
younger members. IEE, Savoy Place, London April 27
Recent developments in the measurement of
wewlicagnetic fields and associated
applicatite
April 29
Sofware
Aprill 29 - a low cost spacecraft for professional
UOSAT and dmatedr scientists: IEE lecture. Wireless World may 1982
possible to prevent electrostatic charg causing degradation or destruction. Whilst this programmer satisfies the initial design requirements there is no reaso why other e.p.r.ro.m. types should not be altering the pin requirements is to brin those pins which are likely to need change to a separate header which may be used as a patch-board, in the same way that the d.i.1. switch was necessary in Fig. 6.
The 26 V transistor interface, Fig
, tolerant of the value of output capacitanc

\section*{April 29-30}

Spectral analysis and its use in underwater conference. Imperial College, London \(\mathrm{SW7}\) Details from: Dr T. S. Durrani, Department of Electronic Science and Telecommunications, University of Strathclyde, Glasgow G1 1XW Up-to-date applications of dataview systems: IEE colloquium.
May 3-6
Video 82 : Trade fair and Congres Indeo 82: Trade fair and Congress:
International Congress Centre, Berlin Organised by AMK Berlintre, Postrichin. 191740 , Messedamm 22, D-1000 Berlin 19.
May 4
Human factors in word processing: IEE May 5-7 Videotext Systems '82: Conference and
Exhibition. Cunard International Hotel, London. Organised by IPC Exhibitions Ltd,
Surrey House, Throwley Way; Sutton, Suirey. Digital t ligial tve effects: IEE Younger Member's
lecture. Ship Hotel, Duke Street, Reading lecture.
although I recommend that the outpu
waveform is checked. The l.e.d. is illumi nated when the output is at high potantial which should be typically 26 V to ensure that the miminum swing of 25 V is met. Reset logic prevents unwelcome voltage
appearing on the e.p.r.o.m. when an outappearing on the e.p.r.o.m. When an out-
put port is arranged so that \(\log \mathrm{c}\)
\(0=0 \mathrm{~V}\). I this is inverted then the problem may be resolved and the port PC-7 becomes spare and could be used to perform some other function. Personally I like to have ports a
logic 0 meaning no output.

May 11-13
Micro City
'82: Information technology exhibition. Bristol Exhibition Complex. Details from Tomorrows World Exhibitions Ltd, 9
Park Place, Bristol BS8 1JP.

May 12
Microprocessor projects for the plastics
industryy Seminar at the National Computing
Centre, Manchester. Organised by the British Centre, Manchester. Organised by the British
Plastics Federation, 5 Belgrave Square, London \({ }_{\text {May }} 12 \mathrm{PW}\)
Electrostatics and optical effects: IOP Meeting. Institute of Physics, 47 Belgrave Square,
London May 12
Time delay systems control: IEE colloquium.
May 12 May 12
Effects of obstacles and dielectric structures in the near-field on antenna performance: IEE colloquium.
May 12
Teletex and its protocols: IEE lecture.
Development environments for microprocessor
systems. IEE colloquium

\section*{路} s 18 , : "

n any positioning system the most crucial mponents are the prime mover and the ransducer used to describe the position Here, the main features of disc-drive posi ioners, including feedback loops and ontrol circuits, are described.
With the exception of fixed head and Winchester type disc drives, the read/writ called the carriage. This carriage has one degree of freedom radial to the drive spindle and is restricted by guideways sually in the form of rails or bars; in mos ases, the carriage runs on ball bearings, ake up play and ensure that the bearings roll instead of skidding. Not all carriages run on ball bearings - some run directly on the guideway - but the way in whic shown in Fig 1. Rotary positioners uch as those used in Winchester dis drives, will be described in a subsequen article.
In multi-platter drives, the heads ar platters to reduce the overall height of the pack and minimize the weight of the car riage. The part of the carriage to which the eads are attached is often called the T lock because more often than not it is he T-block are designated A and B , and each side will have upward and downward facing heads. So in this case there are fou ead/write hoal labels, \(A\)-up, \(A\)-down, \(B\) pr and B-down. A and B heads designed pearance but if they are mistakenly in erchanged, slipper aerodynamics will b
B.Sc., M.Sc., Digital Equipment C
by J. R. Watkinson*


Fig. 1. Four methods used for mounting disc-drive positioner carriages. Common purpose


Fig. 2. Mounting read/write heads side-by-side in multi-platter drives reduces height of the entre line and disc wadius becomes byore posititioner, but alignment between carriage the error caused by carriage/track-radius misalignment becomes apparent at \(B\).
ffected, so the head type is usually clearl
 adjustment of the heads
As the heads are in two rows, it is vita that the centre line along which the car riage travels is precisely on the disc radius provided with the drives allow the heads to be accurately aligned and, equally impor tant, keep the head adjustment standard between drives using interchangeable discs.

\section*{Motive power}

There are three main methods of driving the carriage
- hydraulically
- by moving coil.
- or by electric motor.

Hydraulics. The first moving-head disc drives stored data at very low density by modern standards, so if large amounts o used. Some of these discs measured several feet in diameter. The carriage was equally large, and the only practical way of moving it was by hydraulics. Much research into hydraulic systems for applications such a power-operated gun turrets on military air design of a system for driving the carriage of a disc drive was simplified.
Figure 3(a) shed hydraulically powered positioner in which the pump may be driven either by the spindle motor or by a separate motor. The accumulator is required for rapid seeks when the peak-flow requirement is greate than the pump can deliver; the analogy with a power-supply capacitor is clear valve, the fluid equivalent of a zener diode and a series of solenoid-operated valves with calibrated orifices are used to move
 RELESS WORLD MAY 1982
tor dre carriage at different speeds. Some move from their position in the compute mecause of the reaction from fast carriage acceleration, and had to be move back into place from time to time. Behe-

WIRELESS WORLD MAY 1982


Fig. 3. Essential elements of an hydraulic positioner are shown at (a), in which the pressure from the fluid pump is regulated by a bypass valve and control signals from the drive logic
operate solenoid valves in the control block. Accumulator permits high peak-flow rates operate solenoid valves in the control block. Accumulator permits high peak-flow rates reactions caused by fors carrial
opposed positioners between them to can cel out this effect, Fig. 3(b).

Moving coil. As head and medium desig improved the storage density increased, This made the carriage smaller and lighter so less power was required to move it. A the same time, advances in semiconducto technology brought down the price of power transistors. It thus became feasib with the further weight reduction of the carriage that the principle allows being used to reduce access time.
A typical coil has a diameter of thre inches and works in the radial flux from a
permanent magnet weighing about 50 pounds. Smaller drives use a copper wire coil on a glass fibre former, but larger unit may use self-supporting coils wound from rectangular-section aluminium strip. Alu-
minium has a higher strengthon ratio than copper, and this consideration outweighs the disadvantage of higher resis tance. The coil frequently requires forced air cooling in large units. The assembly is usually described as an e.m.a. (electro magnetic actuator), Fig. 4

Electric motor drive. There are two main types-one is as shown in Fig. 5. In the
first, the motor drives a leadscrew which moves the carriage as it turns. In some cases a stepping motor is used, where the stable positions of the rotor correspond to the positions of disc cylinders.


Fig. 4. Essentials of a disc-drive positioner


Fig. 5. One type of motor-driven positioner. This assembly illustrates how a
positioner using steel wires to drive the carriage looks.


Fig. 6. Mechanical detenting. Detent pawl is split and has two sets of teeth at \(180^{\circ}\) to each Fig. 6. Mechanical detenting. Detent pawl is split and has wo sets of teeth a uper pawl teeth
other. At (a), the carriage is detented to an odd numbered cylinder and the upper pal are engaged. The lower pawl, represented by the broken line, rests against the tops of the rack teeth. In (b), the carriage is detented at an even cylinder and the lower pawl is engaged Tooth pitch on the rack is twice the cylinder spacing.


Fig. 7. Carrier-wave cylinder transducer. Oscillator feeds the transducer primary coil and the wo secondaries are connected in opposite phase. Output signal phase, determined by the elative reluctance of the magnetic circuit's two limbs,
Three examples are given with associated waveforms.

Fig. 8. Parallel bar and Moiré type gratings used to modulate a light beam produce triangle and sine-wave outputs respectively. These gratings are used to

The motor in the second type drives a drum which imparts linear motion to the carriage through flexible steel wires. These wo types are normally used only in small drives.

\section*{Detenting}

When the carriage is held at rest with the heads correctly aligned above the disk tracks, it is said to be detented. Early
drives used mechanical detenting where drives used mechanical detenting where
pawls on a detent actuator move to engage a rack on the carriage. Figure 6 shows a two-phase detent mechanism, where the spacing between cylinders is one half the rack pitch. Mechanical detenting can be found on both hydraulic and moving coil
positioners, and the pawl will be operated by a ram in the former case, or by a solenoid in the latter. The teeth on the rack are asymmetrical so that after the detent has engaged, some forward drive can be apof the pawl jumping out of engagement. The detent actuator is a fine piece of precision engineering, and as such is expensive. Recent drives take advantage of the falling cost of electronic circuitry and employ
electronic detenting, where the carriage is held by a feedback loop using a position transducer. Should for any reason the positioner find itself off track, the position transducer generates an error voltage which will drive the carriage until the error is cancelled. When operating in this way
the carriage servo system is said to be in detent mode, track following mode, fine mode or linear mode, depending on the specific documentation consulted. During
a seek, the servo system changes to veloca seek, the servo system changes to veloc-
ity mode, also known as coarse mode. These are the two major operating modes of the servo.

\section*{Transducers}

The purpose of a transducer will be one or more of the following
- to count the number of cylinders - to generate a signal proportional to carriage velocity,
or to generate a position error proporthe desired track.

WIRELESS WORLD MAY 1982


Fig. 9. Optical velocity transducer. Four quadrature signals are produced from the two-
phase at a time by analogue switches. This process results in a continuous analogue-output voltage proportional to the slope of the transducer waveform, whish is itself proportional to
carriage velocity. In some drives one of the transducer signal's may also be used to count cylinder crossings during a seek and to provide a position error for detenting.

Sometimes the same transducer will be used to provide all three signals. For this principle of operation, rather than by func tion.
Magnetic transducers. There are three distinct types
- moving coil
- moving magne
- carrier wave.

The first two types simply give an outpu proportional to the rate of change of flux The only difference is whether the coil o
the flux moves. Moving-magnet types of ten have the coil concentric with the actuator, which provides good noise shielding Moving-coil types sometimes have a bucking coil connected in phase opposition which does not link the magnetic circuit two types of transducer can only generate velocity signal, but have the advantage tha no precision alignment is necessary; working clearance is all that is required. The flux path of the transducer is completed by a rack on the carriage, often the WIRELESS WORLD MAY 1982
sensitive rectifier gives a binary outpur wich can be used to count cylinder cross error or velocity As no accurate positio extracted, this type of transducer is tricted to use in mechanical detent drives, in conjunction with a magnetic-velocit transducer. Adjustment of carrier-wav transducers is critical, as the signal be from the rack is too great, but the transducer may be damaged by the rack teeth if the clearance is too small.
Optical transducers. These devices con sist of gratings, one fixed and one mova ble. The relative positions of the two wil control the amount of light from an 1.e.d. or bulb which can pass through to Referring to Fig. 8, it can be seen th this class of transducer falls into two cate gories
- Moire-fringe
- parallel-grating.

In a Moiré-fringe transducer the bars on the moving grating are not parallel wit
the bars on the fixed grating. Relativ movement causes a fringe pattern which travels at a right angle to the direction of motion. This results in sinusoidal modula tion of the light beam.
In the second type, all the bars are parallel so the sensor's output is a triangle wave. In both types of uptical transducer the spacing between the two gratings is critical.
Whether the waveform used fo counting cylinder crossings is sinusoidal or
triangular is not important, so the choice between the two transducers is governe by whether a position error or a velocit signal is required. The slope of a sine wav is steeper in the zero region than an equidetecting position error. Conversely th constant slope of a triangle wave is easily differentiated to produce a velocity signa, Because the differential of a triangle wave changes sign twice per cycle, a two-phase tinuous velocity-output signal. Th stationary grating has two sets of bars with a \(90^{\circ}\) phase relationship and the resultan
same one as is used by the detent actuator As the rack moves, the reluctance of the secondary coils are wound in opposition to each other, the output will be alternately is and out of phase with the input. A phase


Fig. 10. Carriage velocity control by cylinder difference. Cylinder-difference value is loaded
into the difference counter, A. A d-to-a. converter generates an analoguu voltage called the scheduled velocity, from the cylinder difference. This is compared with the actual velocity
from transducer \(B\) to generate a velocity error signal which drives the servo amplifier.

(a)
(b)

Fig. 11. In example (a) dissipation in the positioner is continuous, causing a heating
problem. The effect of limiting the scheduled velocity above a certain cylinder differe problem. The effect of limiting the scheduled velocity above a certain cylinder difference is
shown in (b), where eheavy current only flows during acceleration and deceleration. In between, only enough cur
curver acceleration slope.
waveforms are referred to as \(\sin\) and \(\cos\), even if they are triangle waves. The two waveforms and their complements, known as - \(\sin\) and -cos, are differentiated and times when there is no sign change. This process of commutation is achieved by .e.t. analogue switches controlled by comparators looking for points where the input output signal proportional to velocity. Where one transducer has to generate all three of the required parameters, Moiré ype gratings are preferable because of heir better position-error detecting perthe velocity output derived from a sinusoid has to be accepted.
Optical transducers often contain addiional light paths to aid carriage-travel be used during the head-loading sequence o position the heads at cylinder zero, as the sine or triangle outputs are cyclic and o not give an absolute cylinder adaress. Mechanical detent dives pose the problem of finding an absolute reference to the cyc-
lic output from the rack transducer. One solution is to drive the carriage forward lowly until it contacts the forward stop, and then to preset the cylinder count to wo or thre cylinders more than the maximum.

\section*{Seeking}

A seek is a process where the positioner moves from one cylinder to another. The seed with which a seek can be completed time of the drive. The main parameter controlling the carriage during a seek is the cylinder difference:
cylinder difference \(=\)
desired address - current address.
The cylinder difference is a signed binary number representing the number of cylinders to be crossed to reach the target cylinder, direction being indicated by the
sign. The cylinder difference is loaded into 74


Fig. 13. Staircase from a d.-to-a. smoothed
velocity error, and the servo amplifier is now driving a reverse current through the actuator to decelerate the carriage in
accordance with the scheduler. The accordance with the scheculer.
scheduler deceleration slope can never be steeper than the saturated acceleration slope. Areas A and B on the current graph will be almost equal, as the kinetic energy put into the carriage has to be taken out. other losses. The current through the coil is continuous which would result in a heating problem, so to counter this the d.-to-a. converter is made non-linear so tha above a certain cylinder difference no in
crease in the scheduled velocity occurs. This results in the graph of Fig. 11(b). The actual-velocity graph is called a velocity profile, and consists of three regions: ac celeration, where the system is saturated, a constant-velocity plateau, where only friction, and the scheduled. run-in to the desired cylinder. Dissipation is only significant in the first and last regions. The effect of carriage velocity on dissipation is as follows.


Figg. 12. Voltage-dependent feedback around the operational amplifier permits a piecewise
linear approximation to a curved velocity profile. This speeds up short seeks without linear approximation to a curved velocity pro
causing dissipation problems on

WIRELESS WORLD MAY

Carriage acceleration, \(a\), is \(\propto\) actuator cur rent, \(I\), and
\[
a=\frac{2 s}{t^{2}}
\]
where \(t\) is the seek time. Dissipation is
where \(t\) is the seek time. Diss
\(I^{2} R\), which is proportional to \(a^{2} R\)
\[
a^{2} R=\left(\frac{2 s}{t^{2}}\right)^{2} R=\frac{4 s^{2}}{t^{4}} R
\]

Average carriage veolocity \(v \propto 1 / t\)
therefore, dissipation \(\alpha v^{4}\).
As a result, it is necessary to limit th maximum velocity of the positioner ver accurately or severe over
or amplifier may result.
A consequence of the critically damped run-in to the target cylinder is that shor seeks are slow. Sometimes further nonlinearity is introduced into the velocity scheduler to speed up short seeks. The approximation to a curve by using nonlinear feedback. Figure 12 shows the effect of using a shaper or profile generator, a of using a shaper or
this device is known

\section*{Servo amplifiers}

In small disk drives the amplifier is usually linear in all modes of operation, resembling nothing more than an audio output stage. As the scheduled velocity signal
comes from a d.-to-a converter, the deceleration ramp is depicted by a staircase waveform. When the staircase is compared with the actual velocity signal, the resulting velocity-error signal contains an a.c.


In this photograph of a moving-coil transducer, the magnet under the coil can be seen clearly.
component due to the steps. This increases e.m.a. dissipation and can cause an audible sometimes solved by adding a saw-tooth waveform, at the same rate as the steps, to the shaper output. This approach is showi in Fig. 13.
Larger units employ pulse-width modulation to reduce dissipation in the servo
amplifier. The duty cycle is established typically by comparing the velocity erro with a sawtooth waveform. A simplified example of this process is shown in Fig
14. Appreciable electromagnetic radiation is caused by p.w.m. servo systems, but this is generally of no consequence as no data transfer takes place during a seek. In track following mode, p.w.m. servos re
vert to a linear amplifier configuration which is why the term linear mode is often used to desc
positioner. The input of the servo amplifier no mally has a number of analogue switche which select the appropriate signal according to the mode of the servo. As th triangle or sine function, the sense of the position feedback loop has to be inverted on odd numbered cylinders, to allow detenting on the negative slope. In some cases a different velocity transducer is use
when the heads are being retracted from the pack. Figure 15 shows a typical servo amplifier input-selection circuit.

\section*{WAAAMA}

\section*{ת}

Fig. 14. Comparison of velocity error with a sawtooth waveform results in a pulsewidth modulated output which can be used
to reduce dissipation in the servo amplifier.


Fig. ve. Alignmert disc hat patterns. displaced alternately about the centre line of the reference track. In the resulting
oscillograph at (a), the head is too close osche sindlle, at (b) too far from the spindle,
tand at (c), in the correct position.

\section*{Head alignment}

On drives where interchangeable discs are used, the distance between the read/writ heads and the spindle axis is critical. So to set the heads, an alignment disc
(sometimes called a 'custom engineer') containing prerecorded flux patterns at reference cylinder is used. Figure 16 shows a typical alignment-disc pattern and result ing oscilloscope waveforms for correct and incorrect head alignments.
Disc rotation con
supplies and safety will be discussed in the next chapter.


WIRELESS WORLD MAY 1982

\section*{DESIGNING WITH MICROPROCESSORS}

Linking a mocroprocessor with a printer directly is wasteful: much time can be saved by sending data to a buffer for reading at a slower rate. Professor Zissos concludes his series with two articles on programmable ilo chips, this first on basic concepts, and the second on design procedure and implementation.

It is not always necessary or indeed dedirable for two devices to communicate directly, particularly if one device is much microprocessor transmitting data directly to a slow character printer will be idling while a character is being printed. In this situation much time can be saved by the fast device transmitting each item of data oo a port (in practice a data buffer) and
allowing the printer to read the data from the port in its own time - see Fig 1. Such a scheme would release the microprocessor from the unproductive task of waiting and printer is printing. priter is prinug.
mented with programe normally implehips whose operations can be thips, that ithin limits by the user. can be specified ystems involves two steps. First, the is hip is programmed. And second, the in terface between the i/o chip and the per pheral unit is designed. Although the second stage presents no difficulty, programming the chip in practice is not al-
ways a trivial task, because of lack of a ystematic method. This often prevents ne from taking full advantage of the main property of such chips - that their term al characteristics can be specified to som xtent by the designer
wust not send data to he port until it can accept it. For this purpose the port sends a signal (hl) to the source indicating its status, namely whether it is empty or full. Signal hl must also be sent to the acceptor to prevent it read, as shown in Fig. 2 (hl \(=0\) indicates hat the port is empty, and \(h=1\) that the port is full). Reference to Fig. 2 shows tha catus signal hl must be turned on by the turned off by the acceptor when it read the data; variables h 2 and h 3 denote these "handshake" signals.
In practice signal hl is generated by a fip-flop, the status flip-flop. A JK flip pulling its J terminal high and the K terminal low, a pulse on its clock terminal sets it hl \(=1\) ) and pulsing its clear terminal rese That is, a pulse on line hi2 sest the flip flop and a pulse on line h3 resets it. The the clear signal (CLR) immediately after the flip-flop is reset, CLR \(=\) hl.h3 \(=0\) when \(\mathrm{hl}=0\). In practice, the port is a buffer which requires a strobe pulse with

\section*{by D. Zissos} and Jane Pleus
very new item of data before it accepts it the pulse on handshake line h 2 can be used directly for this.
In summary the step-by-step operation of the handshake system in Fig. 2 is as
follows. The source monitors status line hl
o determine whether the port is full or mpty. If empty, it outputs the next item of data and pulses line h2, which strobes lip-flop \((\mathrm{hl}=1)\) by pulsing its clock terminal. This constitutes the write operation; the read operation is initiated by the acceptor when line hl is high. When the pulsing its clear terminal.


Fig. 1. Fast device feeding a slow device needs buffer stage to avoid microprocesso wasting time.


Fig. 2. Handshake signals are exchanged before data is transferred from source to buffer and buffer to acceptor. Source monitors status lines 1 to see if port empty: Line h2 ther

fig. 3. Status flip-flop generates signàl \(h 1\). With \(J\) high and \(K\) low, pulse on line \(h 2\) sets
circuit and on \(h 3\) resets it.


1g 4. A handshake system requires two interfaces, one to coordinate source/buffer activiv and the other acceptor/buffer activity.


Fig. 5. Microprocessor-based system with input port and source (paper tape reader), top,
output port and acceptor (printer), bottom.

To implement a handshake system re quires two interfaces, one to coordinate the activity of the source with the activity of hetivit, of the acceptor with that of the buffer, Fig. 4.
Because most commercially-available microprocessor systems are normally pro ided with ports which are already in terfaced to them, one need only consider WIRELESS WORLD MAY 1982
interfacing peripheral devices to the ports. Therefore microprocessor-base systems with fo ports can be represented paper tape reader and printer act as source and acceptor because their action is easy to visualize - they can clearly be replaced by ny other device, equipment or process. mentation

\section*{IN OUR NEXT ISSUE}

80-100-watt

\section*{audlo ampllifier}

John Linsley Hood's new amplifier is described in a threepart article, beginning with an explanation of design prob-
lems in relation to the characteristics of mosfets. The design will be closely followed by a new, modular preamplifier, the pair forming possibly yet described in these pages. Microprocessor-controlled Microprocessor-controlled
radifocodo clock. Using the 60 kHz standard-frequency me-code transmission from解 and time information utomatically in that the display is continually corrected by the transmission. aricular attention to receiver ffects of interference and a 6502 microprocessor is used to perform the cucoding funcHeretics gulde to modern phyices is a controversial review current doctrine, set at the or educated layman. Enormous gaps exist in our understanding of Nature and many of our fundamental theories are not very credible, says W. a investigates electroma netic theory, photons, duality. quantization, matter waves and haziness, and reviews the state of physics today.
Conirol technology and on large systems - oil rige nuclear power stations, aircraft - to control engineers is not a simple matter of laying ure pan Thdicators on large panel. The psychology of for new types of equipment for dara marshalling and methods of training personnel are examined by R. E. Young
Radio in tunnels by leaky readar. D. J. A. Marin, specialis in undiorground developments in the use of teaky, or radiating, cables
ON SALE MAY 16

\section*{CEPSTRUM ANALYSIS}

This final part of the review gives uses in speech analysis and machine diagnostics, as well as calculation with an FFT analyser using the digital form. Part 2 gave application to signals containing echoes (March), while part 1 derived the cepstrum as the spectrum of a logarithmic spectrum.

The applications of the cepstrum to speech analysis are mainly connected with its ability to separate source and transmission
path effects, provided they have different quefrency contents. This is usually the case with speech where the source spec trum is very flat, containing a large number of harmonics of the voice pitch, but is modified by the resonance character
istics of the vocal tract, the so-called for mants, which determine which vowel is being uttered. Fig. 13 shows spectra and cepstra for the vowels "oh" \(|0|\) and "ee" \({ }^{1}\) and illustrates how the differences mainly trum, which is dominated by the formant characteristic. Non-voiced sounds, such as many consonants and whispered speech, do not give peaks in the cepstrum corresponding to the voice pitch, and one of the separate voiced and non-voiced sounds and to measure voice pitch \({ }^{10}\)
It is also possible by editing in the cepstrum to remove one effect completely, for
example the voice, and thus simplify the tracking of the formants. Fig. 14 from ref 11 shows a typical situation, a three-dimensional representation of the section "ea" from the word "Montreal". The picture is confused but by short-pass liftering each of the spectra to remove the voice
components, as shown in Figs 15 and 16, only the formants are left and the picture becomes much clearer.
The cepstrum can be used for efficient
ocoding and transmission vocoding and transmission of speech. low quefrency part of the cepstrum so only this is transmitted, along with information as to whether the speech is voiced and if so the voice pitch. At the receiver end the speech is reconstituted using the low quef-

Fig. 13. Spectra and cepstra for "ee" [I] vowel


\section*{by R. B. Randall and J. Hee}
acteristic or impulse response for a source which would either be a variable frequency pulse generator for the voiced sections or a noise generator for the unvoiced sections.
Despite the synthetic voice the speech was reported as sounding natural.
It can also be useful to include it along with spectral and other information in pattern recognition algorithms for speaker identification. Inclusion of the cepstral in-
formation improved the ability of the technique to exclude impostors. \({ }^{13}\)
Machine diagnostics
The applications of the cepstrum to machine diagnosis are mainly based on its ability to detect periodicity in the spec trum, e.g. families of harmonics and uniformly spaced sidebands, while being in-

Fig. 14. Scan spectrum of "ea" in "Montreal"
sensitive to the transmission path of th signal from an internal source to an exte signal from an internal
nal measurement point
- The cepstrum technique has been pro posed to aid detection of missing blades in turbines. Such blade anomalies give rise to a large number of harmonics of the shaf rotational speed in measurements \({ }^{14}\) made
both internally and externally on the casing in the vicinity of the affected blade row. Even though the harmonic pattern can be seen by eye, the whole family of harmonics is reduced in the cepstrum easier to monitor easier to monito
Similar reaso
box diagnosoning is applicable to gearbox diagnosis; tooth anomalies have a very similar influence on gearbox vibration signals, as do blading anomalies on turbine signals. \({ }^{.}\)A very detailed discussion is
given in reference 15 of the application of given in reference
cepstrum analysis to gearbox diagnosis and so here the discussion is limited to a couple of typical examples.


In gearbox vibrations deviations from exact uniformity of each toothmesh show up partly as harmonics of the shaft speed and also as sidebands around the toothmeshing harmonics caused by modulation of the toothmesh signal by the lower rotational frequencies. The sideband spacing the source of the modulation and can be extracted using the cepstrum. The cepstrum has the two advantages of being able o detect periodicity not immediately apparent to the eye, and of being able to
measure it very accurately because it gives the average sideband spacing over the whole spectrum.
The first advantage is illustrated in Fis
WIRELESS WORLD MAY 1882

 a) log power spectrum of vowel
b) magnitude of cepstrum


Fig. 16. Short-pass liftered scan spectrum of "ea" in "Montreal"
17 and was made using an FFT analyser type 2033 in conjunction with an HP9825 desk-top calculator. A 2000 -line spectrum includes the first three harmonics of the
toothmeshing frequency of a single reductoothmeshing frequency of a single reduc-
tion gearbox (a). It purposely excludes the low harmonics of the shaft speeds since these may have other causes than the toothmeshing. The spectrum was obtained by performing five 400 -line zoom analyses on the same data and storing the intermediate results in the calculator memory. Th
2000 -line spectrum was then read digital back into the 10 K input memory of the analyser and frequency analysed once more using the scan average procedure with \(75 \%\) overlapping Hanning window to obtain the cepstrum. Fig. 17 (b) reprethough it is difficult to see any periodic structure in the spectrum, it is apparent from the cepstrum that there are two families of sidebands with spacings of 85 Hz and 50 Hz respectively, the rotationa components in the cepstrum stem from one or other of these two shaft speeds. The other advantage is illustrated in WIRELESS ẂORLD MAY 1982

 Fig. 17. Example of a cepstrum analysis on gearbox vibration signal (a) 200--line logarithmic power spectrum

It was traced to the rotational speed of second gear, even though this was idling because first gear was engaged.

\section*{References}
10. NoIl, A.M. Cepstrum pitch determination
J.A.S.A. vol.41. 1967, pp. 293-309. Schafer, R.W J.A.S.A. vol.41. 1967, pp. 293-309. Schafer, R.W signals. Proc. IEEE. 1975, pp. 622-77. signalis. Proc. 1 EEE. 1975, pp. 662 -777.
11. Thrane,. Application of a long memory FF \(066-81\). 066-81.
12. Schater, R.W. \& Rabiner, L.R. System for
automatic formant analysis of voiced speech. automatic formant analysis of oviceed speech
J.A.S.A. 1970 , pp. \(634-48\). Oppenheim, A.V J.A.S.A. 1970, pp. \(634-48\). Oppenheim, A.V.
Speech analysis-sytersis.
momorphic fitering. J.A.S.A. 1969 , ppese on ho \(458-65\).
 13. Luck, J.E. Automatic speaker verification
using cepstral measurements. J.A.S.A. 1969 , pp. 1026-32.
14. Sapy,
14. Sapy, G. Une application du traitement
numérique des signaux au diagnostic vibratoire de panne: La deteection des ruptures d'aubes mo biles de turbines. Automatis
10 , October 1955, pp. 392-9. Randall P , \(\mathrm{p}, \mathrm{cp}\). 32 . . 15. Randall, R. B. Cepstrum Analysis and Gearbox
Fault Diaisgnosis. Bruel \& Kjaer application note
no. \(233-80\). 16. Thrane, N. Discrete fourier transformer and
16T
FTT analysers. \(B \& K\) Technical Reveliew \(\stackrel{\text { FFT }}{\text { 1979: }}\)


Fig. 18. Spectra and cepstra from truck gearboxes in good and bad condition

\section*{ppendix A}

Calculation using FFT analyser and calculator.
ven though the analyser basically performs a
orward transformation of 1024 real data points the results can be modified in the calculator so ceal or complex values thus giving the possibilty of calculating both power cepstra and compiex cepstra. The actual algorithms used are more generally applicable and so are detailed
in Appendix B.
The digital version of eqn 3 for the. power The digital version of eqn 3 for the power cepstrum is
\(C_{\mathrm{p}}(n)=F^{-1}\left\{\log F_{x x}(k)\right\}\)
where \(n\) stands for \(n\)
where \(n\) stands for \(n \Delta t\) ( \(\Delta t\) is the sampling
interval) and thus indicates the time. \(n\) runs interval) and thus indicates the time. \(n\) runs
from 0 to 1023 . Likewise \(k\) represents the frequency \(k \Delta f(\Delta f\) is the line spacing in the fre-
quency spectrum) and in principle also runs quency spectrum) and in principle also runs
from 0 to 1023 even though only the values from 0 to 512 are calculared. Because of the implicit periodicity of all functions calculated by the
FFT process the values of \(k\) from 512 to 1024 also represent the negative frequency components (from -512 to 0) and can usually be be
ner derived from the positive frequency values. As
\(F_{\text {xx }}(k)\) is a real even function, the inverse trans-
for \(\mathrm{xx}^{x}(k)\) is a real even function, the inverse trans
formation can be replaced by a forward transformation (Appendix B1). In general only the one sided power spectrum is given, and the simpler
calculation method of Appendix \(B 2\) will be advantageous. With this method, only the onesided spectrum is transformed, and the real part of the transform gives the desired cepstrum.
Another advantage of this method is that the envelope cepstrum (amplitude cepstrum of the one-sided spectrum) of Fig. 4 may be obtained at the same time. In fact the analyser itself the instantaneous spectrum, which can be iewed on a linear amplitude scale. The enve\(C(n)=\)
\[
C_{\mathrm{e}}(n)=\left|\mathcal{F}^{-1}\{\log G(k)\}\right|
\]
where \(G(k)\) is the one-sided power spectrum.
\(C_{c}(n)=\mathcal{F}^{-1}\left\{\log _{e} A_{\mathrm{x}}(k)+\mathrm{j} \emptyset_{\mathrm{i}}(k)\right\}\) Because the logarithmic spectrum is a coniugate pendix B3 may be used. Note that the phase unction \(\phi_{x}(k)\) must be unwrapped to a contin cipal values modulo \(2 \pi\) which are calculated from the real and imaginary parts of the complex spectrum. Moreover the log amplitude must be scaled in nepers (natural log of the
amplitude ratio) to correspond to the radians of the phase spectrum.
The analysers in general are a.c. coupled, so the zero frequency value in the power sary to insert a value before calculating the cepstrum. In practice best results are obtained by setting the zero frequency compo.
the value of the neighbouring line.
As the FFT algorithm used in the Analysers ypes 2033 and 2031 is optimized for signals with no d.c. component, it is advantageous to
subtract the mean log spectrum value before calculating the cepstrum. This optimizes the signal noise conditions in the cepstrum, and is articularly valuable when editing and transfor
nation in both directions is to be performed. ation in both directions is to be performed.
calculation of the complex cepstrum it dvisable before attempting to unwrap the phase spectrum to remove any simple delay,
which gives a linear slope to the phase specwhich gives a ilnear slope the the phase spec-
trum. This should be done to the maximum extent possible in the time signal before rrans-
formation, and then in the phase spectrum itself formation, and then in the phase spectrum itself
by varying the linear component until the number of "jumps" over \(2 \pi\) is minimized.

\section*{Appendix B}

Calculation of inverse Fourier transform The forward and inverse discrete Fourier are defined as \(X(k)=\frac{1}{N} \sum^{N-1}\)
\(x(n) \exp -\mathrm{i} 2 \pi k n / N\)
and \(x(n)=\sum_{k=0}^{N-1} X(k) \exp \mathrm{i} 2 \pi k n / N\)
where \(X(k)\) the discrete complex spectrum \(x(n)\)
the sampled time function and \(N\) number of amples in the time record. The Fourier transform implemented in
he analysers types 2033 and 2031 is designed to be used forward transformation of real-valued
time signals, but by using ime signals, but by using some of the properties
of the Fourier transform, as listed in the of the Fourier transform, as listed in the
tables, it can also be used for forward and inverse transformation of any complex signals.
The inverse transformation of the three types of The inverse transformation of the three types of
signals: real-valued, real and even, and coniusignals: real-valued, real and even, and coniu-
gate even are described in the following. The

results are sketched where the vertical lines indicate the result of the FFT calculation and the solid lines the desired result. Not that zero is
shown in the centre of the diagram. During nany of the operations, zero frequency or time will be located at the start of the record, but because of the periodicity of all functions the
negative frequencies or times will be located in nege second half of the record.
B1. Real-valued spectrum
From the table it follows that
\(\mathcal{F}^{-1}\{X(k)\}=N[\mathcal{F}\{X(k)\}]^{*}\).
The calculation procedure for positive time is
- forward transform
- form complex conjugate

The result for both positive and negative time is seen in Fig. B1. For the special case of even in that case the next procedure will normally be preferable anyway


\section*{B2. Real and even spectrum}

From the original symmectrical spectrum a new
one-sided spectrum is formed which has the original spectrum as its even part and is zero for negative frequencies. The real part of the
nnerse transform of such a spectrum is identical with the inverse transform of the original spectrum. As normally only the positive frequency
components of the original spectrum are given spectrum for negative frequencies. It follows
that
that \(\mathcal{F}^{-1}\{X(k)\}=N \operatorname{Re}[\mathcal{F}\{\tilde{X}(k)\}]\)
where \(\tilde{X}(k)= \begin{cases}2 X(k), & 0<k<512 \\ X(k), & k=0, k=512 \\ 0 & , 512<k<0\end{cases}\) \(\tilde{X}_{\mathrm{e}}(k)=X(k)\).
The calculation procedure, Fig. B2, is thus - form \(\bar{X}(k)\)
- forward transf
- forward transform
- extract and scale the real part.


B3. Conjugate even spectrum
Any complex spectrum can be inverse-trans-
formed by transforming the real and imaginary components separately by the procedure B1.
However, this requires two Fourier transformations as well as some extra storage capacity mations as well as some extra storage capaciry
or the intermediate results. In the situation
where the spectrum is conjugate even, i.e. correwhere the spectrum is coniugate even, i.e. corre-
sponding to a real time signal, the following
procedure can be used. This requires only one sponding to a real time signal, the following
procedure can be used. This requires only one
transformation and a minimum of storage space.
\(\mathcal{F}^{-1}\{X(k)\}=\mathcal{F}^{-1}\left\{X_{\mathrm{R}}(k)+\mathrm{j} X_{1}(k)\right\}\)
\(=N\left[\mathscr{F}\left\{X_{\mathrm{R}}(k)\right\}-\mathfrak{j} \mathcal{F}\left\{X_{\mathrm{I}}(k)\right\}\right]\) \(=N\left[\xi_{\mathrm{R}}(n)+\xi_{1}(n)\right]\)
Also \(\mathcal{F}^{\{ }\left\{X_{\mathrm{R}}(k)+X_{\mathbf{R}}(k)\right\}=\xi_{\mathrm{R}}(n)+\mathrm{F}_{1}(n)\) where \(\xi_{\mathrm{R}}(n)=\boldsymbol{\mathcal { F }}\left\{X_{\mathrm{R}}(k)\right\}\) and \(\mathcal{\xi}_{1}(n)=\mathcal{F}^{\{ }\left\{X_{1}(k)\right\}\) \({ }_{B}\) The calculation procedure, illustrated in Fig. B3, is as follows.
Add the real and imaginary parts for positive
and negative frequencies. In practice this means adding the inaginary parts to the real parts of
the positive frequency spectrum) for the first he positive frequency spectrum) for the first
half of the record and subtracting the same maginary parts from the real parts for the second half in reverse order.


Forward transform. Add the real and imaginary parts for positive and negative time. The negative time section will be located in the
second half of the record and can be removed to second hars position before the first half. Zero
its corect
time will then be in the centre of the record.

WIRELESS WORLD MAY 1982.

NEW PRODUCTS
SPECTRUM/
NETWORK
ANALYSER



 generator, a four-channel memory,
eight tunable markers and is GPIB eight tunable markers and is GPIB
compatible. Facilities for meacompatible. Facilities for mea-
suring phase and group delay, with
a simultaneous display a simultaneous display of apmpli-
tude, are included. This instrument tude, are included. This instrument
is for use in both production and research and development applicaions. Chase Electronics Ltd, ton, Middx WW301

BLUE L.E.D
his is a 490nm gallium nitride eference source in chromatography applications. Light output, in a ewing angle of 4 , is typically maximum forward-current rating. Forward voltage varies between ound 4.5 V at 0.5 mA and 7.5 V at andard 1.e.d. package. Anglia Components Ltd, Burdett Road, Wisbech, Cambs PE13 2PS.

WAVEFORM
MONITOR
The V-098, designed for broadcast is a waveform monitor that can be set to give a flat response, an IRE
(Institute of Radio Enginers) ponse, or display waveforms subjected to a 4.43 MHz bandpass


filter. In addition, two line and
field sweeps can be selected and various other adjustmentected ande.
This monitor is from Hitachi In-
struments a struments, a new division of Hita-
chi Denshi, and can be btained for nounting in a 19in rack or as a Hitachi Denshi (UK) Ltd, 13-14 arrick Industial Estate, Garrick wW303

ORTABLE VIDEO RECORDER
mport the Technin (UK) Ltd who the world's smallest, lightest and
simplest" video cassette recorder.
It uses 6.3 mm tape cassettes not much larger than a standartes audio cassette, for either 30 or 45 minutes
of play, and weighs around 3.2 kg of play, and weighs around 3.2 kg
with rechargeable batteries. Made by Funai and designed by Futec of
Osaka, the mechanism is simitr to saka, the mechanism is similar to
the one used in the Grundig VP100 he one used in the Grundig VP100
recorder and mentioned in last De-
 pile 87). But Grundig now say they wil not market their recorder in
the U b becusso of spply shortage.
The 212E two-head recorder uses The 212E two-head recorder uses
an Hitachi-made colour camera, an Hitachi-made colour camera,
though almost any other can be
used via a simple adapter, with an electronic viewinder, zoom lens, and close-up \(\times 6\) "macr"" setting.
A u.h.f. television tuner will be Availabie shorty. Sulkine (UK) Ltd,
73 Grosvenor Street, Le 73 Grosvenor Street, London WW 1X
9 DD. 9DD.


TEACH YOURELF An introduction to digital electronics suitable for beginners is given by a kit from Cambridge Learning
covering such subjects as boolea algebra, gating, flip-flops, shiff registers, ripple counters and half adders. Problems, with solutions, and
an appendix covering basic arin an appendix covering basic prin-
ciples are included in the manual.
At \(£ 19\) At \(£ 19.90\), the kit comprises logic i.cs, a 'solderless' breadboard,
i.e.ds, a handful of other components and, of course the manual-
all in a pocket-sized wallet (for 14 cm -wide pockets). A power Supplementary kits delving further into digital electronics are, pro-
posed. Cambridge Learning Ltd, Rivermill Lodge, St Ives, Hunting-
don, Cambs PE17 4EP.

WW305

\section*{NEW PRODUCTS}


BE A SHARP BUSINESSMAN
for only £278 + VAT

COMPUTER AND 4-COLOUR PRINTER
The sensational new PC-1500 Pocket Computer approaches the Personal Computer in ability. Add the revolutionary CE-150
and a cassetter


Price includes SECURICOR 24 HOUR DELIVERY* Same day despatch, subject to availability.

BUSINESS APPLICATIONS

\section*{PC-1506J JAM}

Quick and accurate data processing in daily business. Estimates,
records and charts of sales, salaries, invoicing and all other data crucial to efficient business operations can be easily programmed

ENGINEERING APPLICATIONS Technical calculations in fields such
as mathematics, statistics, measurement and mechanics are done superbly and
easily. The calctind easily. The calculator more than meets
the requirements of engineers and
scientists the require
scientists.


MANAGEMENT APPLICATIONS
 calculations by break-even point analysis are instantly yours with functions, this computer can also be used as a schedule alarm


BASII LANGUAGE
The most simple com
 LARGE MEMOR
LGK bytes



 symbits. Line width is 26 characters and/or numbers.
HMGH SPED DATAROCESSING
The C-MOS 8 .bit CPU enabies swift data processing. Complicated
.
 technical or business calculations reauire far less time.
OWERTY TYPEWITCR KEYBARD
The first in P
 Solx software kevs
These can serve as reserva
These can serve as reservable keys, or as definable keys to define
programs. Programs.
CE. 150 4.CoLLOUR GRAPHIC PRINTER/CASSETTE INTERFACE
Automatic program, data and calcultition
 the printing either up, donnt left, or ringt. As a coseseste anterface it
wiil connect up to two cassette recorders, one for data and program
storase
 AVAILLABLE Soon
RS. 232 C interface.


 Full 12 MONTHS guaramo
 SEND FOR FULL DETAILS to TEMPUS, the Portable Computer
Specialists.


HOBBY APPLICATIONS Many popular computer games
be played, including Blacki ack. be played, including Blackjack,
utilising the random number
fuct function. Use the clock and alarm
for speed games. The Computer
Graphics for speed games. The Computer
Graphics will draw virtually any
patter pattern.

 For irformation only tick appropriate box Total inc VAT | herewith enclose a cheque or Postal Orders value \(£\)
 My number
Name: Address: Address:

W - 087 FOR FURTHER DETALL


NORWOOD ROAD, READING
\begin{tabular}{|c|c|c|c|}
\hline  &  &  &  \\
\hline  & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} &  \\
\hline  & & &  \\
\hline  & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} \\
\hline  & & & \\
\hline  &  &  &  \\
\hline
\end{tabular}

 TELEPHONE NO. READING 66965

\section*{SUPERSEM}

PLYMOUTH 075221256
MEMORIES AT UNFORGETTABLE PRICES


SUPERSEM
UPERSEM

3rd Floir
Britanic
Drake Circus Drake Circus
Plymouth PLL 8 8AO

WIRELESS WORLD MAY 1982


\section*{VIDEOTEX罂}

CUNARD HOTEL, LONDON MAY 5-7,1982
Opening Times: \(10.00 \mathrm{hrs}-18.00 \mathrm{hrs}\)
(closing 17,00 hrs on the last day)

\section*{Specially designed for \\ businessmen who are aware of the need to make their company more efficient!}

This three day event, running parallel with the major conference, is designed to show the hardware and e available in this Technology
All aspects relating to the practical issues of purchasing and installing, operating and applying Videotex
Systems will be covered.
Exhibits will range from large "Turnkey" packages to the smalier, but equally important peripheral devuresinterfaces.
This is the 5th in the highly successtul series of viewdata and videotex exhilbitions sponsored by IPC Business Press, the world's largest business pubilshers. In the past these exhibitions have been successfully used in aunching the latest adaptors and complete systems. These sysiems are the modern tools of the new era in Information Technology

Fill out and return the form below.


\section*{TELETEXT AND PRESTEL VIEWDATA}

Universal single plug-in board


WW - 091 FOR FURTHER DETALLS

\section*{[873 \\ PARABOLIC DISHES}


6 ft dia. for use in satellite reception and microwave transmissions. Please send S.A.E. for full details and data sheet.

Farrison Bros.
22 Milton Road, Westcliff-on-Sea, Essex SSO 7JX Tel: Southend (0702) 32338
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE


RADIO COMPONENT SPECIALISTS

\section*{TEST INSTRUWENIS}

\section*{THANDAR}

Quality British-made Portable Instruments MULTIMETERS:

 TM351......................99

\begin{tabular}{l|l|l} 
FUNCTION GENERTOR: \\
TG102 \\
PORTABLI OSCIILOSCOPE:
\end{tabular}



\section*{SABTRONICS} \(\star\) Available in KITS \(\star\)
\(\qquad\)



FREQUENCY METERS: 8 digit LED


FREQUENCY METERS: 9 digit LED


\section*{SAFGAN BRITIISH-MADE SCOPES}

- 075 FOR FURTHER DETAIL

Happy Memories
Part Type
4116200 ns
4116250 ns
4116 250ns
2114200 ns Low power
2114450 ns Low power
4118550 s .
4118255 ns
611650 ns
6
2708 450ns
2716 450ns 5 volt 2716 450ns 5 volt
2716450 ns three rail
2732505 ns lneel 2732 450ns Intel type
2532 450ns Texas type
Z80A-CPU \(£ 4.75\) Z80A-P10 £4.2 \begin{tabular}{rrr}
1 off & \(25-99\) & 100 up \\
.95 & .85 & .65 \\
.90 & .80 & .60 \\
1.20 & 1.10 & .95 \\
1.10 & 1.00 & .85 \\
3.25 & 2.95 & 2.65 \\
4.95 & 4.45 & 3.65 \\
1.95 & 1.85 & 1.65 \\
2.25 & 2.15 & 1.95 \\
6.40 & 6.00 & 4.95 \\
4.25 & 3.95 & 3.35 \\
4.25 & 3.95 & 3.35 \\
\hline
\end{tabular} Low profile IC sockets: Pins
Pence \(\quad\)\begin{tabular}{llllll}
8 & 14 & 16 & 18 & 20 & 22 \\
9 & 10 & 11 & 14 & 15 & 18 \\
\hline
\end{tabular}
 \(74 L S\) series TLL, large stocks at low prices with DIY discounts
starting at a mix of just 25 pieces. Write or telephone for list.

Please add 30 post \& packing to orders
under \(£ 15\) and VAT to total Access \& Barclaycard welcome
24-hr. service on
\((054422) 618\)
Government \& Educational orders welcome. \(f 15\) minimum counts operated : Telephone or write for
Prices are still tending oto drop
Telephone for a quote before you buy
Happy Memories (WW) Gladestry, Kington Herefordshire HR5 3NY Telephone: (054 422) 618 or 628

-and compatibility of TV sets with TV games and home computers for that matter. Problems arise
when a set doesn't like a non-standard inputsignal. Television's special feature sets out to solve this problem and also features a detailed list of main
facturers suggested modifications. LOPT TESTER
Line output transformer failure is a common enough failura- with some makes more than
others-but it's not alwayseasy to be sure that the others-but tit's not always easy to be sure that the
transformer is defective. This useful, easy-totransformer is defective. This useful, easy-to-
construct tester will help to solve the problem and save you time.


GET A COPY TODAY

\section*{}

267 \& 270 ACTON LANE, LONDON W4 5DG. Telephone: \(01-7471555\) Mon SAT. Telex 291429

\section*{STABILISED POWER SUPPLIES}

FARNELL A15: 210/240V 1P. Dual Op. \(12-17 \mathrm{v}\) per rail at 100 mA .
Remote sensing, current limit protection. \(164 \times 130 \times 38 \mathrm{~mm})\), with
mantal Remote sensing, current limit protection. ( \(164 \times 130 \times 38 \mathrm{~mm}\) ), with
manual. \(\mathrm{f12}\). COUTANT OA2: Op. amp, psu, \(120 / 240 \mathrm{~V}\) IP. Dual Op. \(12-15 \mathrm{v}\) at
\(100 \mathrm{~mA} .138 \times 80 \times 45 \mathrm{~mm}\).) \(£ 12\) ea. or 2 for \(£ 22\). BRANDENBURG Photomultiplier PSU. 19in. rack mounting.

 Various other makes of power supplies in stock.

\section*{D TO A CONVERTERS}
 television transmission standard. Diff. gain 0.5\% dift. phase shift
\(0.5^{\circ}\) types rad 802 and MC2208/8. Unused. Ex-maker's pack. \(0.5^{\circ}\) types rad 802 and MC2208/8. Unused. Ex-ma
NEW IN STOCK SPEIAL OFFER PRICE: E20

\section*{NEW IN STOCK
A range of high}

A range of high quality transformers SPECIALLY WOUND for us. By
buying direct we can offer these superb SPLTT PRIMARY \&
SECONDARY transformers


\section*{SPECIAL OFFERS}



 Discounts availabie on quantity
 UU Moters: \(40 \times 30 \times 23 \mathrm{~mm}\) deen. Whitered. Brand nerew: \(4 \times 30 \times 23 \mathrm{~mm}\) deep. White/red scale on black background.


SPRAGUE: Series 36 D Computer grade electrolytics 3,300 at 40 V .
Brand new and boxed Brand new and boxed.................................................35p ea.
SIEMENS:
Brocond Radial Polyester Film Capacitors. 10 F at 63 V . Quantity available

\section*{VIDEO GAME BOARD}

FIELD GOAL VIDEO GAME, BY TAITO. A top quality board
complete with 6800 CPU system with 2716 eproms with circuit diagram, plus all connections for either colour or black and
white monitors (TV sets). Price \(£ 20+\) VAT \(£ 3\). \(\mathrm{P} / \mathrm{P} £ 2.5\)
POWER SUPPLY KIT TO SUIT + circuit diagram
Price \(£ 15+\) VAT \(£ 2.25\). P/P \(£ 3.45\).
\(2 \times\) 22-WAY GOLDPLATED DOUBLE-SIDED 0.156" EDGE CONNECTORS to suit videoboards.
Price E1.60 pair + VAT 24p. P/P included.
THE COMPLETE KIT \(£ 46\) INCLUSIVE. Full details on application

\section*{WE PURCHASE}

Surplus component stocks, redundant materials, obsolete computers, for cash.
We also collect - distance no object. Just call:
C. T. Electronics (Acton) Ltd. 267 \& 270 Acton Lane, London W4 5DG Telephone 01-747 1555; 01-994 6275 Telex 291429

This advertisement is mainly of our excess stockholding. We also have excellent stocks of semiconductors, hardware, cables,
etc., etc. For further details send for our ists and retain price catalogue, phone or visitiour shop. Al prices are exclusive of VAT
(and P\&P). Minimum Mail Order \(£ 5+\) P\&P + VAT. Government departments, schools, colleges, trade and expor welcon

\section*{Mucletude
RFAmplifiers}


Over 65 Models Available Class A wide band Linear R.F. Amplifiers or VCO's in
the range D.C. to 4 GHz with power output up to 100 W the range D.C. to 4 GHz ; with power output up to 100 W
and gains to 60 dB ; you can't do better than Nucletude. and gains to 60 dB; you can t do better han wuch units available. Get full details from Telonic Berkeley U.K.
\(\pi\)
TELONIC/BERKELEY U.K

WW - 073 FOR FURTHER DETAILS
TIME WRONG?
MSF CLOCK is ALWAYS CORRECT - never gains or loses,
SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap Year, can
expand to Years, Months, Weekdays and Milliseconds, expan arallel BCD output for computer or alarm, etc
also pap
STOPCOCK and audio to record and show time o playback, receives Rugby 60 KHz atomic time signals, built-
in antenna, 1000 Km range, GET the TIME RIGHT, only \(\underset{ }{60 \mathrm{~K} H 22.80}\) RUGBY RECEIVER, as in MSF Clock, serial data output 60KHZ RUGBY RECEEVER, as in MSF Clock, ser
for computer, etc., decoding details, 177.90 .
Each fun-to-build kit (ready made to order) includes all parts,
printed circuit, case, postage etc., instructions, money-back printed circuit, case, postage etc., instruction
assurance so GET yours NOW.

CAMBRIDGE KITS




TAMGERIME •TAMGERINE •TANGERINE


ONLY 3p EACH

 High ouality High Stability, Huge
Strontinisive. Add \(£ 1.00\) p\&pall areas. ORION SCIENTIFIC PRRODUCTS LTD. 4 Golden Square, London, W. 1
ww - 081 FOR FURTHER DETAILS


WW - 011 FOR FURTHER details



\section*{PRICE ON APPLICATION?}


We also manufacture servo amplifiers, and can adaptour proven contact-
less sensing system to new applications.
FLIGHT LINK CONTROL LTD.
TURK STREET, ALTON, HANTS GU34 1DL
hone: 042087241 (24 hours). Telex: 858623 TELBUR G

 \(=\)
Don't make that mistake - please send for full details, judge the
iosticks on their merit, and only then give yourself a pleasant surprise by joysticks on their
reading the prices.
By specialisation, volume production and controlled overheads we are
able to offer well-enlue
 ne-of triple axis orce-feabback system, including to
iers. Our current ranges cover most combinations of:

\section*{ \\  \\  \\ applications.
\# idatition we can design and build prototypes or one-offs within \(2 / 3\)
weeks, and build special requirements into standard units within days.}

DISTRIBUTORS:
Australia; Tecnico Electronics, Lane Cove, Sydney, N.S.W., Australia

 380/320.
Singapor: Innovative Design Systems PTE Ltd., 50 Orchard Road, Singapore
Horese
Holland: Hewell ill international b.v., Postbus 1262170 AC Sassenheim,
Holland \(0252-11509\).

\section*{ww - 098 FOR FURTHER DETALLS}


96

To obtain further details of any the coded items mentioned in the Editorial or Advertisement page of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards post from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters
If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAAS SUBSCRIPTION AG (rina: Gordon \({ }^{2}\)
 solgium: Agence er tokyo 160
 Canade :Ovvis Cictulution
 Crorus: Gonenal: Press
 Donmari: Donsk
Biaddiatritioution.



 Sacmany: W.E. Saaribach






 Yon: A.D.A. 1811 Khiab



```

Enquiry Service for Professional WIRELESS WORLD Wireless World, May 1982 WW 265

$\left.\right\|_{\text {wve. . }} ^{\text {wow.. }}$	
ww. .	
ww.	
WW. .	
ww.	
WW..	
$\left\lvert\, \begin{aligned} & \text { ww . . } \\ & \text { ww . . } \end{aligned}\right.$	
ww...	
WW . . .	

```
WW...
Ww...
```W....
\[
\therefore \begin{aligned}
& \text { rease an } \\
& \text { the appr } \\
& \text { space pre }
\end{aligned}
\]
\[
\begin{aligned}
& \text { the appropriate ' } \\
& \text { space provided. }
\end{aligned}
\]
Name.
Name of Company.
Address .
```

PUBLISHERS
USE ONLY
Position in Compan

```
Nature of Company/Busin
No. of emnlovees at this establishment.
wish to subeneto wiraswora}

\section*{Wireless World:}

\section*{Subscription Order Form}

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

\section*{Subscription Manager,}

IPC Business Press
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH,
England

Enquiry Service for Professional WIRELESS WORLD Wireless World, May 1982 WW 265
Readers ONLY. Readers ONLY

Reader Enquiry Servic
429 Brighton Road
South Croydon
Surrey CR2 9PS

Wireless World Subscription Order Form Wireless World, May 1982 WW 265

UK subscription rates
1 year: \(£ 12.00\)
Overseas 1 year: \(£ 15.00\)
Please enter my subscription to Wireless World for 1 year

I enclose remittance value made payable to IPC BUSINESS PRESS Ltd.

USA \& Canada subscription rates 1 year: \(\$ 39.00\)

Name.
Address.
\(\qquad\)
\(\qquad\)
\(\qquad\)

Avo Sales and ServiceFarnell International
Farnell International Instruments Ltd. Sandbeck Way, Wetherby
West Yorkshire LS22 4DH
Tel 093761961 Telex 55478 Farint G

WW - 010 FOR FURTHER DETAILS

PROGRAMME \& DEVIATION CHART RECORDERS

EV88 - A low-cost evaluation system for the \(\mathbf{8 0 8 8}\) microprocessor
EV88 is a single board microcomputer that is ideal for
evaluating the 80888 -bit/ \(/ 6\)-bit microprocessor. EV88 can evaluating the 80888 -bit/ \(/ 6\)-bit microprocessor. EV 88 can
also be used as a powerful controller, and, with a suitable cross-assembler running on a standard microcomputer, and
an EPROM programmer, for low-cost development of 8088-
based systems. bed
EV88 is supplied fully assembled and tested, with compre-
hensive documentation, and a coop of The 8086 Book, by Rector and Alexy. All you need is a \(5 V 1\) i power supply and
her terminal or a suitable microcompute
\(\star 8088\) microprocessor in minimum mode
Comprehensive
K
2 KCMOSR RAM.
\(\star\) Cassette interfac

* RS-232 compatible serial interface (300 baud to 9600
\(\star\) Thre Three-channel counter/tim
\(\star\) Buffered data, address and control lines.
\(\star\) On-board expansion to 16 K EPROM/RAM (sockets pro \(\star\) Breadboarding area.

\(8088 / 8086\) design service available (software and hardware)
LFH Associates Ltd
40A Aigh Street
Stony Stratford
Milon Keynes
Milton Keynes
\((0908) 566660\)
WW - 077 FOR FURTHER DETAIL

\section*{CHILTERN ELECTRONICS}

\section*{B.C.M., Box 8085, London WC1N 3XX. Tel: 0494714483} THIS MONTH SPECIAL OFFER BRAND NEW SURPLUS-DRI32 5 Megabyto DISKS. A top quality exchangeable
cartidge disk drive, that will easily interacee to a mini/micro. Full yuranteed -with

MAll orderbargaln

 -

 WE STOCK COMPLETE RANGE OF DEC SYSTEMS

WW-065 FOR FURTHER DETALS
\begin{tabular}{|c|c|c|c|}
\hline NEW POWER RHEOSTATS & \begin{tabular}{l}
Variable voltage transformers \\

\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
EPROM ERASURE KIT \\
 load, Neon Indicator, sfofer Microswitch, on/ off Swiththir Circuit.
\end{tabular}} \\
\hline ? & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{\begin{tabular}{l}
leads, Neon Indicator, safety Microswitch, on/off Switch, Circuit
LESS CASE. Price: \(\mathbf{£ 1 3 . 6 0 + 7 5 p ~ P \& P \text { . (Total incl. VAT, } £ 1 6 . 5 0 \text {). }}\). \\
Warning: Tube used in this circuit is highly dangerous to the eyes
\end{tabular}} \\
\hline & & \multicolumn{2}{|l|}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline h. Ideal for above Rheostats 24 & 15 KVA 175 amp MAX) & \multicolumn{2}{|l|}{\begin{tabular}{l}
 \\
 \\

\end{tabular}} \\
\hline TE E.H.T & \begin{tabular}{l}
 \\
TT TA Anspoporpmasemax
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
 \\
 TOTAN
\end{tabular}} \\
\hline & \begin{tabular}{l}
LT TRANSFORMERS \\

\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
ROTARY CARBON VANE VACUUM \& COMPRESSOR \\

\end{tabular}} \\
\hline & \multirow[t]{3}{*}{\begin{tabular}{l}
 VAl \\
 \\

\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline & & \multicolumn{2}{|l|}{\begin{tabular}{l}
WATER PUMP \\
Mifg. by S.P.A. Astais of tialy. 220/2400 AC 50 hz. 2800 R.P.M.
\end{tabular}} \\
\hline c. s & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{aporox. 40 atais oet min at 1 Olobs had. HY-LYGHTSTROEE KIT MK IV}} \\
\hline & \multirow[t]{4}{*}{\begin{tabular}{l}
SNIP OF THE MONTHI 220-240V. Primary, 0.24 V . Secondary at 4 amp . Fully shrouded. New Price £4+£1 P\&P. (Total inc. VAT £5.75). N.M.S. \\
Other types in stock, phone for enquiries or send SAE for leaflet.
\end{tabular}} & & \\
\hline ERS (Now) - 90 mm & & \multicolumn{2}{|l|}{\begin{tabular}{l}
HY-LYGHTSTROSE KIT Mi IV IV \\

\end{tabular}} \\
\hline Motere & & \multicolumn{2}{|l|}{INSULATION TESTERS NEW 5} \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ every 24 hrs. at any manually pre-set time 36 hour}} \\
\hline ESCEN & \multirow[t]{2}{*}{FROM STOCK AT PRICES
THAT DEF COMPETITION!} & & \\
\hline & & \multicolumn{2}{|l|}{} \\
\hline coicle & dems & \multicolumn{2}{|l|}{SAAGAMOWESTONTME TMWITCH} \\
\hline & ES & \multicolumn{2}{|l|}{} \\
\hline & & \multicolumn{2}{|l|}{} \\
\hline . 400 W UV Lam & REED SWITCHES CONTACTORS
SOLENOIDS
SYNCHRONOUS & \multicolumn{2}{|l|}{} \\
\hline CK LIGHT & \multirow[t]{2}{*}{PROGRAMME TIMERS MOTORS
Phone in your enquiries} & \multicolumn{2}{|r|}{TIME SWITCH} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & \\
\hline & & & \\
\hline \multirow[t]{3}{*}{Ample parking spac Showroom open} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{ROAD, CHISWICK, LONDON W4 5BB, 01-995 1560}} & \multirow[b]{3}{*}{9 Little Newport Street London WC2H 7JJ Tel: 01-437 0576} \\
\hline & & & \\
\hline & \multicolumn{2}{|l|}{ACCOUNT CUSTOMERS MIN. ORDER £10,} & \\
\hline
\end{tabular}

11 MARKETING Ltd.

WIRELESS WORLD MAY 1982

\section*{B. BAMBER ELECTRONICS}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Airmec Millivolt Meter Type 301A..... \\

\end{tabular} \\
\hline Marconi 20 mHz Sweep Generator Type TF1... Motors suitable for driving cam switches 120 volt AC \\
\hline \\
\hline \\
\hline b boxed \\
\hline \\
\hline good condition \\
\hline \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \\
\hline 240 volt RMS output 250 watt £4 \\
\hline \\
\hline (eater \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline Rhode \& Schwarte Polyskop SWOB 1 Type BNatidi/275 \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

 EFBRANTM MICROSPOT CATHODE RAY TUBES TYpe
3H7010 Suitabe for Photographic Mult-Channel Re

\section*{We are open all day Saturdyy. Hundrads of
bargains for callers. Stockisis of Switches, \\ }

GOOD SECONDHAND EQUIPMEN
ALL PRICES QUOTED EXCLUDE P/P ALWAYS WANTED FOR CASH AND VAT UN OUOTED EXCLUDE P/P

USTATION ROAD, HTTLEPORT, CAMBS CB6 10 E.

Cotswold Electronics LTd.
 WW - 086 FOR FURTHER DETALLS
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
RHODE \& SCHWARZ \\
Selective UHF V/Meter. Bands 4 \& 5 . USVF Selectomat Voltmeter USWV £450. UHF Signal Generator SCH \(£ 175\). XUD Decade Synthesizer \& Exciter. POLYSKOPS SWOB I and II Modulator/Cemodulator BN17950/2.
\end{tabular} \\
\hline \begin{tabular}{l}
MARCONI \\
TF995B/2 AM/FM Signal Generator. TF2500 Audio power meter \\
6551 SAUNDERS. \(1400-1700 \mathrm{MHz}\). FM TF1066B / 1. \(10-470 \mathrm{MHz}\). AM /FM TF1152A/1. Power meter. \(25 \mathrm{~W}, 500 \mathrm{MHz}\)
E50. \\
TF1370A RC Oscillator £135. \\
TF791D Carrier Deviation Meter.
\end{tabular} \\
\hline beckman tuãns counter dials Miniature type (22 mm , diam.). Counting up to 15 . turn .Helipots". Brand new
mounting instructions. Only \(£ 2.50\) each. \\
\hline \begin{tabular}{l}
\(\star\) VIDEO EQUIPMENT SALE \(\star\) \\
CONTENTS OF COMPLETE \\
MONOCHROME STUDIO \\
MARCONI Video/Audio mixing desks. Monochrome Video cameras complete with on-board monitors. \\
Video monitors types CONRAC II (\(9^{\prime \prime}\) tube) PROWEST 13". \\
To be sold in first-class working condition. \\
Offers invited for complete lot.
\end{tabular} \\
\hline SEALED LEAD ACID BATTERIES Gould GELYTE type PB660. 6V. 6A.H. Measures 374
(75 post). \\
\hline 20.WAY JACK SOCKET STRIPS. 3 pole type \(£ 2.50\) (4 p.p.). Type 316 three-pole plugs for each (+ 25p p.p.). Type
above-20p ea. pp. \(\mathrm{free)}\). \\
\hline
\end{tabular}

\section*{P.\&R. COMPUTER SHOP}

\section*{IBM GOLFBALL PRINTER 3982, \(\mathrm{f70}\)} EPSON MX-80 \(80 . G P\) S 3982 IBMIO PRINTERS DOT

 SARN: MONDAY TO.

COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD
HEYBRIDGE, ESSEX
PHONE MALDON (0621) 57440
WW - 018 FOR FURTHER DETALLS

\section*{BRITAIN'S BETTER BARGAIN STILL IN WORLD-WIDE DEMAND}

WIRELESS WORLD CIRCARDS at 1976 prices \(10 \%\) discount for 10 sets! Most sets are still available even though the companion volumes CIRCUIT DESIGNS 1,2 and 3 are out of print. (CIRCARDS SETS 1 to 30).

Fill gaps in your circuit files with these sets of \(127 \times 204 \mathrm{~mm}\) cards in plastic wallets These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.

1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled) 6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits 11 Basic logic
gates 12 Wideband amplifiers 13 Alarm circuits 14 Digita Counters 15 Puls mester gates 12 Wideband amplifiers 13 Alarm circuits. 14 Digital Counters 15 Pulse modulators 16 Current differencing
amplifiers - signal processing 17 Current differencing amplifiers -signal generation 18 Current differencing 22 Amplitude modulation and detection 19 Monostable circuits 23 Transistor pairs 21 Voltage-to-frequencency converters \(\begin{array}{llll}22 \text { Amplitude modulation and detection } & 23 \text { Reference circuits } & 24 \text { Voltage regulators } 25 \mathrm{RC} \text { oscillators }-126 \mathrm{RC} \\ \text { oscillators - } 2 & 27 \text { Linear cmos }-1 & 28 \text { Linear cmos }-2 & 29 \text { Analogue multipliers } 30 \text { Rms }\end{array}\) multipliers 32 Transistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications \(-1 \quad 35\) Analogue gate
\(--\frac{1}{\text { To IPC Electrical-Electronics Press Ltd. }}\)
General Sales Department,
Room 205 ,
Quadrant House,
Sutton,
Surrey SM2 5AS

Company registration in England
Quadrant Housel The Quadrant,
Sutton, Surey SM 5 S.
Reg. No 677128

Please send me the following sets of Circards:
\(£ 18\) for 10 post free.
Remittance enclosed. payable
to IPC BUSINESS PRESS LTD.
Name (Please print).
Address (Please print)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
MICR0 TIMES \\

\(\qquad\)
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & \multirow[t]{2}{*}{} \\
\hline \multirow[t]{3}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \\
\hline & & & & & \\
\hline & & & \multicolumn{2}{|l|}{Ancers solering} & \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{} & \\
\hline \multirow[t]{2}{*}{} & & & \multicolumn{2}{|l|}{CMOS AND 74LS
SERIES AVAILABLE
UPON REQUEST} & \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multicolumn{2}{|l|}{ Disitiol} & & & & \\
\hline \multicolumn{2}{|l|}{} & & & & \\
\hline
\end{tabular}

POWER SUPPLIES

\(\frac{\text { WW - 088 FOR FURTHER DETALLS }}{\square \text { EDMUND SCIENTIFIC }}\) LLUSTRATED CATALOGUE At last this famous range of products is now available in the U.K. and Ireland from RHEINBERGS SCIENCES LIMITED. Over 2000 products

\(\substack{\text { Intard } \\ \text { Polizin } \\ \text { Toors } \\ \text { OEM }}\)
Sitraction Gratings
Holography
.

\section*{Multi Dired Drive Cassette Mechanism}

3 Motor Direct Drive • High Reliability • Wide Speed Range, \(1.2-19 \mathrm{~cm} / \mathrm{s} \cdot\) Designed for Full Remote Control
Dual Capstan: \(0.16 \%\) Wideband Wow/Flutter Motion Sensors and Tachogenerator: Intelligent Control of Applications: Studio Quality Recording Equipment •
Comet ble Equipment -
and Monitoring

\section*{PRPST}

\section*{Low Ohm Resistance \(\quad\) Decade Resistance Boxes}

TIME ELECTRONICS LTD, Botany Industrial Est., Tonbridge, Kent, England TN9 1RS.

\section*{RECHARGEABLE BATTERIES}

PRIVATE \& TRADE ENQUIRIES WELCOME Full range available to replace 1.5 volt dry cells and 9 volt
PP type batteries, SAE for lists and prices. \(£ 1.45\) for PP type atteries,
booklet, "'Nickel Cadmium Power," \(\star\) New sealed lead range no
Write or call at: SANDWELL PLANT LTD 2 Union Drive, Boldmere
Sutton Coldfield, West Midlands, 021-354 9764
WW - 047 FOR FURTHER DETAILS
EPROM PROGRAMMER 2716 HEXKEYPAD
aneruleotor
2732 :TVMONTIORRDISPLAY
2532 CASSETTEBACK-UP
SOFTY STANDS ALONE
£169+ VAT, EX-STOCK, BY RETURN DATAMAN DESIGNS LOMBARD HOUSE, ww - 013 FOR FURTHER DETALLS

\section*{PRINTED CIRCUITS}

FOR WIRELESS WORLD PROJECTS
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Mesememele}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & 为 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{M. R. SAGIN, NAMCABRAS MIL, THE LEVEL}} \\
\hline & \\
\hline
\end{tabular}

WIRELESS WORLD MAY 1982

Barrie Electronics Ltd.
3,THE MINORIES,LONDON EC3N 1BJ TELEPHONF: O-4-4883368

\section*{Appointments}

> Advertisements accepted up 12 noon Tuesday, May 4, for June issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: \(£ 13.50\) per single col. centimetre (\(\min .3 \mathrm{~cm}\)), LINE advertisements (run on): \(£ 2.50\) per line, minimum 5 lines. (Prepayable.)
BOX NUMBERS: \(£ 1.50\) extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.) IRECT LINE)

\section*{ITN}

\section*{SENIOR MAINTENANGE ENGINEERS}

Communications R \& D... ...the leading edge

\section*{ELECTRONIC ENGINEER} RESEARCH \& DEVELOPMENT We are a medium-sized company employing approximately 20 in the Cambridge Electronic Industries group of com-
panies, specialising in producting television distribution panies, specialising in producting television distribution
equipment and associated electronic products. An enthusias-
tic Electronic Engineer is sought to join our existing deequipment and associated electronic products. An enthusias-
tic Electronic Engineer is sought to join our existing de-
velopment team. He/she will work in a modern, wellvelopment team. He/she will work in a modern, well-
equipped laboratory and will be responsible for seeing pro-
jects through from initial conception to final production. We jects through from initial conception to final production. Wo
envisage that the successful candidate will be \(23-35\) years of age, with a degree in electronics and at least two years'
experience in a research and development environment. Applicants should have detailed experience, or a keen in+ Dititland alage circuld
\(\star\) Digital and analogue circuit design from D.C. to 1 GHz
\(\star\) Cable distribution of tesesinisis.
The company offers good working conditions, a 37-hour The company offers good working conditions, a a 37-hour
week, 25 days annual holiday and a contributory pension
scheme. Assistance with relocation will be considered where. scheme. Assis
appropriate.

Please send full C. V. to
Mr C. G. Houghton
Mr C. G. Houghton
Personnel Manager
Labgear Limited
Abbey Walk, Cambridge

\section*{VTR \& Telecine Maintenance}

Senior
Electronics Engineer
A Senior Electronics Engineer is required to join a small bu expanding team working on a variety of projects in the fields of Robotics, The successful applicant will be qualified to degree level and will have relevant experience in analogue and digital design techniques.
A thorough knowledge of at least one current microprocesso is required, and a high level of enthusiasm and self motivation is essential.
me company is situated in a pleasant part of Avon, a few Working conditions are excellent and M5. according to qualifications and experience. Contact G.S. Chewins, Senior Personnel Officer, (Recruitment)
BAJ Vickers Limited, Banwell, Avon, BS24 8PD. BAJ Vickers
A Vickers company
 we're applying the very latest ideas on electronics and other technologies to the problems of sophisticated the flow of essential information. The work is of the hi ffering full and worthwhile careers to men and women high ability, on projects covering the following areas of interest:-

RADIO - from HF to microwave, including advanced modulation systems, propagat
studies, applications of Microcircuitry.
ACOUSTICS SIGNAL ANALYSIS MAGNETICS SYSTEMS ENGINEERING Applicants, under 30 years of age, should have a good honours degree or equivalent qualification in a relevant subject, but candidates abt to graduate may Ap
Appointments are as Higher Scientific Officer according to qualifications and experience. Promotio For an application form, please write to the Recruitment Officer (Dept. WW 5), HM Governm mmunications Centre, Hanslope Park,
Milton Keynes, MK19 7BH.

Responsible for the maintenace of VTR and telecine equipment, including ACR25B, VPR2B, VR1200C, BVU200/800, standard U-Matics and Rank Cintel Mk III's and associated editing and control systems.

\section*{ENG/OB Maintenance}
(Ref 000010)
Responsible for the maintenace of all the ENG and OB transportable equipment including BVP330 cameras, BVU50 and 110 recorders, VPR2 and VPR20 C-format machines, TBCs and diting systems.

\section*{Radio Links Maintenance}
(Ref 000011)
Responsible for the maintenance of our radio link equipment and extensive radio telephone network. Equipment includes frequency agile 2.5 GHz video links and numerous UHF and network. Equipment includes frequency agile
VHF FM R/T systems, both static and mobile.

\section*{Sound Maintenance}

\section*{(Ref 000012)}

Responsible for the maintenance of a varied range of audio equipment, including sound mixing desks and associated studio sound equipment, film and video sound dubbing suites
and a wide variety of audio recorders including \(r\)

\section*{Central Maintenance}
(Ref 000013)
Responsible for the maintenance of not only all our studio equipment, including Marconi Mk 9 cameras, CD480 mixers, Quantel DPE5001, Aston Character generators and the usual ancillaries but also such equipments as DICE and ACE digital converters, Oracle and graphics computer systems.
The above vacancies offer a challenge to experienced engineers wishing to join an extremely active company expanding to meet its Channel 4 commitments.
Applicants should have qualifications to HNC level or equivalent and be experienced in
It would be of relevant broadcast TV equipment. microprocessor systems Good prospects exist in all the above posts for promotion, with experience, to Supervisory Engineer.
Generous pension scheme, free life assurance
Applications should be made in writing giving qualifications and experience to:
THE MANAGER, ENGINEERING MAINTENANCE
INDEPENDENT'TELEVISION NEWS LTD
ITN HOUSE
48 WELLS STREET
LONDON W1P 4DE

Television International
Television International is a large television facilities company serving the broadcast industry It supplies both staff and equipment
in the fields of Video Tape, Telecine, Television Studios and Television in the tiel Broadcasts.
It is at present expanding these facilities and has vacancies
for substantive engineers in the following departments: stantive engineers in the following departments VIDEO TAPE OPERATIONS
Engineers are required with a wide knowledge of broadcast
otape work and who are capable of undertaking simple editing video tape work and who are capable of undertaking simple editing
and front-line machine maintenance. TELECINE OPERATIONS
Engineers here should be experienced in the operation and front-line maintenance of Cintel \(M \mathrm{Mk} 11 \mathrm{~T}\) Telecine machines and \(h\) a thoroug
Digiscan.

VISION CONTROL AND MAINTENANCE
Engineers are required with experience of the maintenance and alignment of electronic equipment. They must be prepared to operate as a Vision Control Engineer in both studio and outside
accast locations

Salaries and conditions for the above will be in accordance Salaries and conditions for the above wirl be in accordarce
with the ACTI grade plus local supplements. The Company benefits With the ACA grade plus local supplements. includes free Life Assurance. Training will be provided to keep staf abreast of current developments within the industry.

Written applications, together with CV should be sent to: Mr. Alan Edwards, Director of Operations,
Television intemation
\(9-11\) Windmill Street,
London Wip
London WiP 1HF:
Tel: \(01-6372477\).
\(\boldsymbol{\sigma}_{\text {A memberof the RANK PHICOMVIDEOGROUP }}{ }_{(1576)}\)

\section*{Electronics Technician}

An experienced Electronics Technician is required to work within the Microprocessor An experienced Electronics Technician is required to work within the Mice.
The Section is responsible for providing micro-based equipment throughout the research boratory environments
Candidates should be qualified to Ordinary/Higher TEC level in Electronics, or possess own initiative.
Previous professional knowledge of microprocessor-based equipment is essential. Candidates must be able to read and interpret modern digital circuit diagrams for both fault finding and the layout of prototype printed circuit boards and be able to generate such documentation
As much of the work of the Section is involved with computer peripherals a knowledge of interface standards and techniques would be useful. Candidates must hold a current

A competitive salary will be paid commensurate with qualifications and experience and will include London Allowance and quarterly and annual bonuses. There is a non-contributory pension scheme and flexible working hours are in operation. Consideration will also be given to relocation expenses in appropriate cases.
Please write or telephone for an application form to: Miss E. M. Butter, Glaxo Group Research Limited, Geenford Roud, Geenferd,
2707. Please quote reference number \(\mathrm{ZH} / 424\).

DOLBY SYSTEM
Dolby Laboratories Inc.
Quality Control Engineer c. \(£ 9000\)

We manufacture a wide range of professional audio
noise reduction systems which noise reduction systems which are used throughout
the world in the broadcasting recording and film in dustries. The quality and reliability of our products is of prime importance
An engineer is required who will be responsible to the
QA Manager for all aspects of manufacturing and test areas and for the development of the quality control function.
The successful applicant will probaly
The successtul applicant will probably be a graduate
with experience of quality control in the electronics industry. A background in audio engineering would be an advantage.
The attractive salary is supplemented by competitive
benefits including a non-contributery benefits including a non-contributory pension scheme
and relocation assistance if needed

For more information and an application form contact:
Kevin Cross
Dolby Laboratories Inc.
346 Clapham Road
London SW9 9AP
Tel: 01-720 1111
WIRELESS WORLD MAY 1982

Rediffusion Consumer Manufacturing Limited Group Leader Test Equipment
\(\qquad\)

 Pow cost is availabie and assistance with rifocation will be given as
An autrative salary will be offered with 23 davs' holiday per year and atfer

 Ifyou are interosted in this challenging position and would like more details,
piteose write or telephone in in complete confidence to

Surrey KT99 1 HJ
Telephone: \(01-3975411\)

REDIFFUSION

\section*{ELECTRONIC TECHNICIANS}
and engineers
 qualifications in an electronic engineering discipline or \(H\) H. Forres equir
valent. with at least seven years experience in instalation esting

\section*{Maintenance}

Middle East - Fixed Term
 Communication Systems and be offereda two year contract with an antractive

Installation and Commissioning
Worldwide - Permanent

ele
Communication Systems

\section*{TEST ENCINDERS}
microprocessor controlled business systems, optical fibre and microwave transmission systems Major advances in the telecommunications field have yieldedexceeptionalgrowth and created additional opportunities for engineers in this expanding technology. ange of digital equipments. So you will need qualifications to at least third year City and Guilds in industrial electronics or telecommunications.
Salaries will be in the range \(£ 5.6-8\) a according to experience, with overtime and shift Salaries will be in the range e55.6-8k according to experience, whovertime atd
work aveiibel. We can arange accommodation and offer a generous relocation
package, where approrriate.
To: Mr Z.K. Flizak, GEC Telecommunications Ltd. PO Box 53 , COVENTRY CV3 1HJ.
Name
Address
Qualifications
Present Employer
Experience
sc
Telecommunications

CAMBRIDGESHIRE COLLEGE OF ARTS Lecturer II in Radio Communications Engineering Required for September 1982 to teach Radio communications engineering

Lecturer I in Electronics Practice

 neiectronitics senvicieng department is
essential and iteaching experience Temporary Lecturer I in Electronics

 \begin{tabular}{c}
qualifica \\
ience. \\
\hline
\end{tabular}
 depending
experience.
Further details and forms from Head Of Deoproment of Enyinearing, cCAT,

WIRELESS WORLD MAY 1982

\section*{Electronic Engineers for O.A.Department Wembley Middlesex.}

\section*{Racal BCC are members of the} highly successful Racal Electronics Group and are world leaders in the design and manufacture of tactical
radio-communications equipment. adio-communications equipment
We require two experienced electronic engineers to fill position at Intermediate grade within the Quality Assurance department. Preference will be given to engineers who are familiar with the requirements of Def-Stan 05-21 and Q.A. functions including defect analysis, quality costs, and the
monitoring and control of Company systems. Applicants aged \(26-50\) must be educated to HNC/HTC level or knowledge of communications equipment would be a distinct advantage.
We offer excellent conditions of service including a good basic salary and Group Productivity Scheme, 27 days annual holiday, a contributory assurance.

\section*{World leaders in clectronics}

\section*{Radio Operator Technicians} for British Antarctic Survey

The British Antarctic Survey requires Radio Operator Techni
cians to man single handed wireless stations at their permanen Cians to man single handed wireless stations at their permmanen
Antartic bases. The appointments will cover two consecutive Kingdom of about 32 months.
Applicants must be able to maintain SSB transmitting and re-
ceiving equipment as well as aerial arrays. Communication beceivieng equipmentic Stations and the United Kingdom is by radio
tween the Antarctic teleprinter through a cable and wireless station. Teleprinter,
morse and voice communication is also maintained between foreign Antarctic stations, ships and aircraft.
Qualifictications: MRGC or better and a c capabily of sending and Qualifications: MRGC or better and a capability of sending and
receiving morse at a minimum of 20 wprm.
Experien Experience in maintaining communication equipment is essen-
tial. A knowledge of teleprinters and touch typing an advantage. tial. A knowledge of teleprinters and touch typing an advantage
Applications from amateur and armed service trained personnel Appications in be consided provided that the necessary expertise can be
will benstrated.
demor demonstrated.
3p, physically fit and male.
Salary: From f5,410 pal
Salary: From \(£ 5,410\) per annum plus a pay addito Clorn.
and free messing and canteen are provided free on the station seas. Low income tax .

Application forms may be obtained from: The Establishment
Officer, British Antarctic Survey, High Cross, Madingly Road, Officer, British Antarcic Survey, High Cross, Madingly Road Please quote Ref: BAंS 57.
Clasing date: 27 April, 1982

Natural Environment Research Council

HAMMERSMITH AND FULHAM HEALTH AUTHORITY
HARING CROSS HOŚPITAL

\section*{MEDICAL PHYSICS}

\section*{TECHNICIAN GRADE 1}

Salary scale: \(£ 8968-£ 10319\) per annum inclusive
An Electronics Technician with considerable experience of maintenance of electronic and biomedical equipment
is required to supervise the day-to-day work of nine techniciens engaged in the the day-to-day work of nine
tepair, calibration and safety checki
ment.
Applicants should have previous experience of personnel safety aspects of medical equinent

Opportunities will exist for the development of electronic would be desirable. The successful candidate will be expected to participate in the activities of the medical
electronics section of the department of
Ideally, the successful candidate will have an HNC or HND
in electronic engineering in electronic engineering.
For an application form and job description, please
contact Mrs J. Cordery, District Personnel Department, Charing Cross Hospital, 'Fulham Palace Road, London W6. Charing Cross Hospital, Ful ham \(P\) P
Telephone \(01-7482040\) ext. 2992.

\section*{Appointments}

\section*{Technical Training Officer}

This is an excellent opportunity for a man or woman to make a
meaningful contribution to the training needs of a world leader. Salar meaningtul contribution to the training needs of a world eader. Salay will be competitive and accompanied by first class beneits.
For further information, please write or telephone: Tony Elliott, Marconi Avionics Limited, Elstree Way, Borehamwood, Herts, Warcon AVX. Tel: 01-953 2030

\section*{(Grade MPT III)}

\section*{Kingiom of Lesotho}

\section*{Transmitter Engineer}

Up to \(£ 11,500\) p.a. plus benefits A challenging post in this beautiful and
mountainous kingdom in southern Africa.
Applicants must possess an engineering degree and have at least five years experience in transmitter engincering and maintenance.
Duties will include operation and maintenance of
woo tookw shortwave transmitters identifying two
operational needs, and staff supervision and t training Appointment will be on contract for two years. Salary includes a substantial tax-free allowance paid under Britain's overseas aid programme.
Benefits include:
\(\star\) Free passages
\(\star\) Generous paid leave
\(\star\) Generous paid leave
\(\star\) Children's holiday visit passages and education
- Subsidisised ho
* Appointment grant and interest-free car loan For full details and application form write quoting
YC \(/ 202\) WW or telephonon 01.2227330 Ext 3633 .

Crown Agents

The Crown Agents for Oversea Governments \& Administrations, Recruitment Divisio
4 Millbank, London SW 1P 3JD.

\section*{ELECTRONIC DEVELOPMENT ENGINEER We are seeking to expand our development team by recruiting a young Graduate with two to three
signing analogue and digital circuitry Our range of products includes Modulation Meters, SSB Transmitter Drive Units and Spectrum Analysers. Experience in any of these fields would be an advantage but is not strictly \\ essential. \\ We are offering an excellent working environment plus a real attractive salary to the successful applicant \\ SAYROSA ELECTRONICS LTD.
Anstey Mill Lane Alton Hants GU34 Anstey Mill Lane, Alton Hants GU34 2 QQ}

\section*{U.S.A.}

British-run company near New York seeks Electronic Engineer (B.Sc. or equivalent) for design of medica and industrial instruments. Could probably represent
us later in UK. Starting salary \(\$ 15,000(£ 8,000)\). Please us later in UK. Starting salary \(\$ 1\),000 (\(£ 8,000\). Pease send resume of training and experience
instruments Inc., Saddle Brook, NJ 07662.

SALES REPRESENTATIVE
PUBLIC ADDRESS AND AUDIO EQUIPMENT We are the newly-formed marketing arm of a manufacturing company, now estab-

 Apply, in firstist instance, to:

VISATON-LAUTSPRECHER
Peter Schukat
Pfalastr. \(5-7\)
P.O. Box 1052
5657
Haan 1 West Germany

\section*{SOLE DISTRIBUTOR for U.K.}

Our range of products covers loudspeakers and accessories for \(\mathrm{Hi}-\mathrm{Fi}\), Musician and Car Stereo.

The applicant should have good connections to the electronic shops and manufacturers of cabinets, to whom our products should be offered with priority.

We are seeking a serious experienced Sales Representative with proven record of success.

Please apply in writing
enclosing career details to:

\section*{SALES ENGINEERS}

For 1. West Midilands 2. South East 3. West of England

Required by Townsend-Coates, a leading franchised distributor of electronic components
The successful applicants will have com ponent knowledge, be already selling to industry or have sales flair.
We offer competitive salaries plus bonus, company car, non-contributory pension and private health schemes.

Please sent C.V. to
Managing Director
Townsend-Coates Ltd.
Lunsford Road
Leicester LE5 OHH

Appointments

GARDLINE SURVEYS
ELECTRONICS ENGINEERS
Due to continued expansion, we need person
types of equipment aboard our survey vessels:
DFS III/V QUANTUM DAS 1A shallow digital seismic SIDE SCAN, MAGNETOMETER, SB PROFILER BOOMER/SPARKER

\section*{ANALOGUE EQUIPMENT}

Good salary, sea-going allowances, leave arrangements and company pension scheme
benefits. Promotion prospects excelient. This is an opportunity to join a dynamic, fast-growing company involved in all aspects of Please write, quoting WW106, to:

THE MANAGING DIRECTOR MIRALTY ROAD GREAT YARMO ADMIRALTY ROAD, GREAT YARMOUTH
OR TELEPHONE: 0493 50723, EXT. 200, MRS. GOFF

\section*{DATACOMMUNICATION NETWORK TECHNICIAN}

Up to £8,850
BACS is a wholly ownen associated Company of the maior Clearing
Banks. The main activity of the Company isto provide anelectronic funds transferservice to the banks and their customers.
To complement the current services and assist with the planned
expansion of new telecommunications facilt expansion of new telecommunications facilities, the Company is seeking
personnel who have had previous experience of data communications personne who have had previous experience
and can demonstrate a working knowiedge of
\(\qquad\) Circuit installation and acceptance (P.W. and P.S.T.N.) *Modem and circuildiagnostic routines
 in order to support our communication networks. Applicants
must be prepared for shift working in due course. must be prepared for shift working in due course. Excellent thenefits are offerere in addition to a competitive
salar,
halich holiday, non-contributory pension and iife assurance scheme,
subsidised staft restaurant. Sports \(\&\) Social Club, relocation subsidised staff restaary.
assistance if necessary.
For further details and an application
form please telephone Mrs. R. Sidders form please eiephone is. R. Sidde
on \(01-952\) 2333 or write to herat:Bankers' Automated Clearing Services Limititd,
De Havilland Road De Havilland Road,
Edgware HA8 5 SAA, Edgware HA
Middlesex.

SCOTTISH OFFICE RELESS TECHNICIANS (\(£ 5,300-£ 7,060\))

 Hree Yearr' appropriate experience. Some assistance may be
given with relocition expenses
Avail UK drivity to drive private and commercial vehicles are essential urther information are obtainable from

 Closing date for receipt of completed application forms is 14 May,
Cisi2.

\section*{Zehrlel Ltd}

AUTOMATIC TEST EQUIPMENT

\section*{APPLICATION ENGINEERS}

Zehntel are world leaders in in-circuit test technology,
and we need good duality APPLICATION ENGINEERS to assist with our further expansion plans.

If you would like to join a young progressive team of
people at our Milton Keynes office, write with your CV to:
PAUL SMITH
Zehntel Ltd
62 Tanners Drive
Blakelands
Milton Keynes
MK145BP

\section*{INDEX TO ADVERTISERS MAY}

Appointments Vacant Advertisements appear on pages 108-119

Please send the ANTEX New Range full colour brochure to: NAME
ADDRESS

\title{
The Tektronix 2200 Series. Simply great.
}

Tektronix traditions of excellence in designing and manufacturing oscilloscopes are recognised all over the world. But rather than rest on past laurels, we have veered dramatically from the well established design paths. we ourselves have laid down.

With the 2213 priced at \(£ 670^{*}\) and the 2215 at \(£ 850^{*}\), these 60 MHz dual trace oscilloscopes are an entirely new form of instrument.

Their most remarkable characteristic is the way in which major design advances have provided full-range capabilities at prices significantly below what you would expect to pay. How has this been accomplished? To begin with, we have reduced the number of mechanical parts by more than half. This not only saves manufacturing time, it lowers costs and improves reliability.

Board construction has been greatly simplified and the number of boards reduced. Board connectors have also been reduced substantially and cabling cut by an amazing \(90 \%\).

The 2213 and 2215 have a high efficiency regulated power supply which does away with the need for a heavy power transformer. There are no linevoltage adjustments. Just plug the instrument into a power socket supplying anything from 90 to 250 volts, \(48-62 \mathrm{HZ}\), switch on and you are ready to measure. Power saving circuitry has eliminated the cooling fan, resulting in further economies in size and weight.

These scopes have it all. Dual trace. Delayed sweep for fast, accurate timing measurements. Single time base in the 2213, dual time bases in the 2215. An advanced triggering
system; automatic focus and intensity. Beam finder - and much more.
Interested? Then why not telephone your nearest Tektronix office or circle the enquiry number for further information.

\section*{Performance Specifications}

Bandwidth
Two channels, DC-60 MHz io 20
\(\mathrm{mV} / \mathrm{div}, 50 \mathrm{MHz}\) to \(2 \mathrm{mV} / \mathrm{div}\).

\section*{Light Weight}
\(6: 1 \mathrm{~kg}\left(13^{1 / 2} \mathrm{lbs}\right) .6 .8 \mathrm{~kg}(15,0 \mathrm{lbs})\) with cover and pouch.
Sweep Speeds
Sweeps from 0,5 s to \(0.05 \mu\) s (to 5 \(\mathrm{ns} / \mathrm{div}\) with \(\times 10\) magnification). Sensitivity
Scale factors from \(100 \mathrm{~V} / \mathrm{div}\) (10x
probe) to \(2 \mathrm{mV} / \mathrm{div}\) (\(1 \times\) probe).
Accurate to \(\pm 3 \%\). AC or DC coupling.
Also available from Electroplan.
* Prices subject to change without notice.

\footnotetext{
Tektronix UK Limited
PO Box 69, Harpenden, Herts. AL5 4UP
Tel: Harpenden 63141 Telex: 25559
}

Regional Telephone Numbers: Maidenhead
0628 73211, Manchester 061.4280799,
Livingston 32766, Dublin 850685/850796
PT206```

